
Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 23-24, 2019 

 
 
Neural network approach to the quantitative analysis of low-resolution gamma spectra with 

uncertainty 
 

Jinhwan Kim, Kilyoung Ko, Wooseub Kim, Gyuseong Cho* 
Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology, 

Republic of Korea 
*Corresponding author: gscho@kaist.ac.kr 

 
1. Introduction 

 
The aim of radioisotope (RI) identification algorithms 

is to identify or quantify radioactive materials by 
measuring the energy of the emitted gamma rays. 
Various fields such as homeland security, 
decontamination, nuclear nonproliferation, radioactive 
waste, and many other disciplines that involve radiation 
rely on various types of detectors combined with 
algorithms to detect nuclear threats, track and 
investigate radioactive materials. The ideal detector 
used for these purposes typically requires the following 
physical properties: high-energy resolution, 
temperature-independent gain shift, high detection 
efficiency, and a large variety of shapes. So far, none of 
the detector types has met all of these conditions; while 
a high purity germanium (HPGe) detector has high 
energy resolution but fall short of other conditions, a 
thallium sodium iodide (NaI (Tl)) detector is high 
efficient in detection and varies in shape, but does not 
meet other requirements. The high-energy resolution 
and temperature-independent gain shift are the 
properties to facilitate the RI identification. If the results 
of the RI analysis with spectra obtained from the 
NaI(Tl) detector with these properties are comparable to 
those of the HPGe detector with good resolution, the 
NaI(Tl) detector might be an appealing choice close to 
the ideal detector. In this regard, various RI 
identification algorithms have been proposed to 
overcome the physical limitations of the NaI(Tl) 
detector. Although many of the algorithms have shown 
their effectiveness in analyzing RIs, it seems necessary 
to improve the accuracy of RI analysis for the low-
resolution spectra.  

In this paper, we proposed an ANN-based algorithm 
that automatically analyzes gamma-ray spectra and 
provides the all identified radioisotopes (RIs) with their 
fractional activities. The performance of the proposed 
algorithm was verified as follows: (1) the algorithm was 
applied both to the spectra obtained by the NaI(Tl) and 
HPGe detectors, and the results were compared; (2) 
spectra shifted to the maximum by the temperature 
change from 0 to 50 ℃ were evaluated. To accurately 
evaluate the algorithms with fractional activities of RIs, 
the following certified reference material was used: 
152Eu ,154Eu ,22Na, 54Mn, 57Co, 60Co, 109Cd, 133Ba, and 
137Cs. 

 

2. Methods and Results 
 

2.1 Training and validation sets creation 
 

The performance of the ANN-based algorithm 
depends largely on what data is used for training. In 
addition, large data is required to prevent overfitting. To 
this end, Monte-Carlo simulation was used to produce 
various spectral shapes by mimicking measured spectra 
[1–3]. However, the accuracy of predicted results 
tended to be degraded when evaluating measured 
spectra due to a discrepancy between measured and 
simulated spectra [2,3]. Instead, we synthesized the 
various shapes of spectra (synthetic spectra) by 
assuming the measured spectrum could be considered as 
a linear combination of base spectra, described as 

       (1) 
where S denotes the estimated spectrum, I is the 
population of RIs, ϵ int,i represents intrinsic efficiency, gi  
is gamma yield, ri is the relative activities of the RIs, 
and Bi represents the base spectrum for RI  retrieved 
from a spectra library. The number of the target RIs and 
the output nodes of the ANN should be the same. As 
shown in Fig.1 the synthetic spectrum better mimics the 
measured spectrum than the spectrum simulated by 
Monte Carlo N-Particle Transport Code 6 (MCNP6).  
 

 
Fig. 1. A comparison of measured, simulated, and synthetic 
spectra. Their relative activity ratios were 137Cs 39.0, 22Na 
30.5, 60Co 23.5 and 54Mn 7.0% 

In addition, this synthetic spectrum can be easily 
generated in large amounts of data. The detail process 
of synthesizing spectra is as follows. The specific RIs 
were chosen from the base spectra library. The number 
of selected RIs was randomly selected ranging 1-5. 
Their relative activities corresponding to the selected 
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RIs was randomly sampled while others assigned zero. 
Then, the synthetic spectrum was made according to (1), 
where the intrinsic efficiency of the RIs was calculated 
by MCNP6. To mimic shifted spectra due to the gain 
shift effects, each channel in the spectrum was linearly 
repositioned. The shifted spectrum was reconstructed 
using spline interpolation with the original channels. 
The magnitude of this shift was randomly selected 
between 0.92 and 1.05. This shifted spectrum does not 
reflect the features of the actual measured spectrum, 
such as electrical noise and uncertainty. To mimic a 
more realistic spectrum, white noise was added to the 
spectrum. Then, the spectrum was normalized. This 
process was repeated to generate 500,000 and 5,000 
spectra for training and validation sets, respectively.  

 
2.2 Test set creation 
 

To create the test set, the gamma spectra were 
measured with five different combinations of RIs, as 
presented in Table 1.  

 

Table 1. Five different combinations of RIs and their relative 
activity ratios 

Case RI Ratio (%) 
1 152Eu 100 

2 
57Co 
109Cd 

31.1±0.9 
68.9±2.0 

3 

152Eu 
154Eu 
60Co 
137Co 

26.3±0.8 
25.0±0.8 
21.4±0.6 
27.3±0.8 

4 

152Eu 
154Eu 
60Co 
137Cs 
22Na 

22.6±0.7 
21.5±0.6 
18.4±0.6 
23.4±0.7 
14.1±0.4 

5 

152Eu 
154Eu 
137Cs 
54Mn 
60Co 
22Na 

21.7±0.7 
20.7±0.6 
22.5±0.7 
3.9±0.1 

17.6±0.5 
13.6±0.4 

 
The corresponding CRMs were placed 6cm away from 
the NaI(Tl) or HPGe detectors for 300 seconds at room 
temperature 20℃. Two more test sets were made by 
assuming gain shift and uncertainty scenarios. The gain 
shift scenario was intended to ensure that accuracy is 
maintained when the spectra shift due to temperature 
changes. The spectra were measured under the same 
conditions as above, but the temperature was changed to 
50℃ where the spectrum was shifted the most in the 
negative direction. This temperature was determined by 
ascertaining the extent to which the 60Co spectrum 
shifted while adjusting the temperatures of 0-50 ℃ in 
steps of 5 ℃ (Fig. 2). In each step, the temperature was 
held for 2 hours to achieve temperature equilibrium in 

the entire volume of the scintillator. It should be noted 
that the NaI(Tl) detector connected with the PMT was 
placed in the constant-temperature oven (HG-THC150), 
while the others such as an amplifier (ORTEC 673) and 
a mulita channel analyzer (ORTEC TRUMP-PCI-2k) 
were placed outside of the oven at constant room 
temperature. In this figure, the spectrum shifted little in 
the positive direction. This might be because the light 
yield of the NaI(Tl) scintillators tends to slightly 
increase and decrease as the temperature increases, 
while the PMT gain tends to decrease [4]. Though the 
spectrum was rarely shifted in this case, the spectra were 
intentionally biased to the positive direction by 
adjusting the gain and measured for the gain shift 
scenario. The uncertainty scenario was intended to 
evaluate how well the proposed algorithm analyzes high 
uncertainty spectra without obvious photo-peaks. For 
this, the acquisition time was reduced from 60 to 0.1 s 
with intervals of 5 or 1 or 0.1 s, and the spectrum was 
measured 10 times at each times.  
 

 
Fig. 2. Relative 60Co peak position versus temperature change 
of 0-50 ℃ 

2.3 Hyper-parameter optimization 
 
The proposed ANN has several hyper-parameters: the 

number of layers, the number of neurons and the 
activation function in each layer, the learning rate of the 
Adam optimizer, and the neuron dropout rate. Choosing 
the optimal hyper-parameters is a crucial task because it 
can have a significant impact on the performance of the 
ANN. Softmax activation function in the last layer was 
used to quantify the probability liked to each output 
neuron. Although this function is traditionally used for 
classification, it showed its effectiveness in a regression 
model [1]. The remaining hyper-parameters were 
determined using Bayesian optimization which uses all 
information available from previous evaluations of the 
model to decide where to sample for the next evaluation, 
whereas the grid search and random search methods are 
independent of the previous run [5,6]. Bayesian 
optimization consists of two main parts. It builds a 
statistical model , which is a Gaussian process due to 
its flexibility and tractability for the objective function, 
in this case the cross-entropy function, and updates the 
posterior probability distribution on  using all 
available data. The mean and covariance matrix for the 
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posterior distribution were calculated using the Matern 
5/2 kernel function [5]. Then, the acquisition function is 
calculated using the current posterior distribution. Here, 
the expectation improvement was used to determine the 
next sampling point to evaluate. We used Bayesian 
optimization as implemented in the Python package 
GpyOpt version 1.2.0, searching the space of the hyper-
parameters listed in Table 3. The optimized hyper-
parameters in the search space were also shown in Table 
3. Training was terminated when there was no decrease 
in the mean cross entropy error of the validation set 
during 100 consecutive epochs.  

 
3. Result and discussion 

 
In order to validate the performance of the proposed 

algorithm with regard to the quantitative analysis of RIs, 
we quantify the fractional activities of RIs contributing 
to the spectra measured both by the NaI(Tl) and HPGe 
detectors for the five cases (Table 1). To directly 
compare the results, the error was defined, shown as 

   (2) 
 
where is the truth of ith output, and is the ANN 
output of the ith output. An example of comparison 
results is shown in Fig. 3 and Table 2. It was confirmed 
that the proposed algorithm is able to estimate the 
relative activity of the identified RIs contributing the 
spectra measured by both the NaI(Tl) and HPGe 
detectors.  
 

 

Fig. 3. Measured spectrum of the case 5 (152Eu, 154Eu, 60Co, 137Cs, 22Na, 
54Mn) against the estimated by ANN-based algorithm 
 

Table 2. Comparison results of quantitative analysis of the 
NaI(Tl) and HPGe spectra for the case 5 

RIs True(%) 
Predict(%) 

NaI(Tl) HPGe 
152Eu 21.7 21.2 19.8 
154Eu 20.2 20.7 19.1 
137Cs 22.5 21.9 21.8 
54Mn 3.9 6.4 5.9 
60Co 17.6 18.3 20.5 
22Na 13.6 10.7 12.9 

Error (%) 4.0 4.3 

Fig. 4 also shows the case 5 spectra shifted in the 
positive and negative directions. The errors with the 
negative and positive directions were 4.3 and 5.5%, 
respectively, which demonstrate only very slight 
increases. This is because the training data was made 
considering shifted spectra so that the positional effects 
on features such as the photo-peak are minimized and 
overall spectral shape was trained. Note that these 
spectra would be difficult to analyze without 
recalibration.  
 

 

Fig. 4. Case 5 spectra measured at temperature 20 and 50 ℃, 
and the spectrum positively baised by adjusting the gain 

 
To investigate how well the ANN analyzes high 

uncertainty spectra without obvious photo-peaks, the 
spectra were measured while reducing the acquisition 
time. As presented in Fig. 5(a), as the acquisition time 
increases, errors and deviations tend to decrease for the 
case 4. In particular, the error is significantly reduced 
after 2 s measurement. This tendency was similar in 
other cases. Figure 5(b) shows the case 4 spectrum 
measured for 2 s and the estimated spectrum based on 
the determined relative activities of the identified RIs. 
Despite a lack of obvious photo-peaks, the well trained 
ANN identified RIs and determined their relative 
activities. This is because when synthesizing spectra for 
the training data, various magnitudes of white noise 
were added to mimic actual measured spectra with short 
acquisition time.  
 

 
Fig. 5. (a) Error changes with increasing acquisition time (b) 2 
sec measured spectrum for the case 4 (152Eu, 154Eu, 60Co, 137Cs, 
22Na) against the estimated by ANN-based algorithm 

 
4. Conclusion 

We have described an ANN-based algorithm that 
automatically analyzes low-resolution NaI(Tl) spectra 
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and determines the fractional activities of all the 
identified RIs. It was confirmed that the low-resolution 
spectra can be quantitatively analyzed as precisely as 
the results of the HPGe spectra at the possible exposure 
temperature changes of 0-50 ℃. Furthermore, high 
uncertainty spectra can be analyzed with precision. 
These results show the possibility of using the NaI(Tl) 
detector as the ideal-like detector by overcoming its 
physical limitations such as low-resolution and 
temperature-dependence gain shift using the proposed 
ANN-based algorithm.  
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