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1. Introduction 

 
Nuclear power plants (NPPs) consist of numerous 

piping systems, where various pipe bends and elbows 
are used.  These pipes are placed in proper locations in 
the piping system and carry out an important role in 
permitting the modification of the isometric routing and 
reducing the anchor reaction forces [1]. In addition, the 
pipe bends and elbows absorb energy through local 
plastic deformation under excessive load conditions 
above the elastic range, thereby preventing damage to 
the entire piping system. 

However, in the piping system, the pipe bends and 
elbows are exposed to a large number of degradation 
mechanisms. When the pipe bends made of carbon steel 
are in contact with the fluid flow, there is a high 
possibility of occurrence of wall-thinned defects mainly 
by flow-accelerated corrosion (FAC) [2]. It is essential 
to investigate the effect of wall-thinned defects, since 
the wall thickness of the pipe bends and elbows under 
various loading conditions is likely to be thinned and 
broken.  

Therefore, in this study, data on wall-thinned bends 
and elbows obtained through finite element method 
(FEM) were used to predict the collapse moment by 
using an artificial intelligence method. Then, the 
simplified cascaded fuzzy neural networks (SCFNNs) 
were used to estimate the collapse moments of the pipe 
bends and elbows in the piping system. Also, the related 
variables of SCFNN were optimized by the genetic 
algorithm combined with the least squares method and 
the SCFNN showed quite good performance. 

 
2. Evaluation of the Collapse Moment using Finite 

Element Analyses 
 

Using the FEM, the geometric shapes of the pipe 
bends and elbows of the piping system were modeled, 
and the collapse moment of this model was defined. 
Since the FEM has no restrictions on the use of load 
and boundary conditions, these conditions were treated 
as nodes. 
 
2.1 Criteria for Collapse of Wall-thinned Pipe Bends 
and Elbows 

 
The collapse moment ( cM ) of the pipe bends and 

elbows in the piping system of the NPPs was obtained 
using the twice-elastic slope (TES) method from the 
moment ( M ) versus rotation curve ( ρ ), as shown in 
Fig.1 [1]. The collapse moments of the wall-thinned 

bends and elbows are defined as the intersection of the 
line corresponding to half the inclination of elastic 
region and the moment-rotation curve as shown in Fig. 
1 (a). On the other hand, as shown in Fig. 1 (b), when 
the maximum moment appears at an angle smaller than 
the intersection of the moment-rotation curve and the 
TES line, the maximum moment is defined as the 
collapse moment. Here, parameter θ  is half of the 
circumference angle of the wall-thinned defects and 
TES line is the straight line with 2 θ  angle on the 
vertical axis. 
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Fig. 1. Moment-Rotation curve [1] 
 
2.2 Analysis Conditions 

 
In order to analyze the behavior of the wall-thinned 

pipe bends and elbows with respect to the 
circumferential position of the defects, the carbon steel 
bends that have outer radius of 400mm and nominal 
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thickness of 20mm are considered. The pipe bends and 
elbows are connected to straight pipes with lengths 
equal to 10 times the mean radius ( mR ) of the pipe bend 
to permit free ovalization of end section of the pipe 
ends. In this analysis, defects existing within the 
extrados, intrados and crowns of the pipe bend are 
assumed, and the geometry of the defects is as shown in 
Table I [1]. 

 
Table I: Conditions for FEA of Wall-thinned Pipe Bends 

and Elbows 

Wall-thinned 
locations Extrados, Intrados, Crown 

Bend radius (Rb/Rm) 3, 6 
Bend angle (°)  30°, 60°, 90° 

Defect geometry 
Thinning length 

(L/Do) 
0.25, 0.5, 1.0, 1.5, 2.0 

(tnom-tp)/tnom 0.233, 0.466, 0.699 
θ/π 0.0625, 0.125, 0.25, 0.50 

Load 
Bending mode Opening and closing 
Pressure (MPa) 0, 5, 10, 15, 20 
 

2.2 Finite Element Models 
 
A nonlinear three-dimensional FEA was performed 

to evaluate the collapse moment at the wall-thinned 
bends and elbows. Because the geometry and load of 
the bend and elbow are symmetrical, an 1/2 symmetric 
model is used. And the FEA is accomplished using 
ABAQUS, a universal finite element analysis program. 
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Fig. 2. Definition of dimensions for wall-thinned defects in 
pipe bends and elbows [1] 
 

3. SCFNN methodology 
 
3.1 CFNN Model 

 
The FNN model is combination of a fuzzy inference 

system (FIS) and ANN’s learning capability [3, 4]. The 
CFNN model have two or more FNN modules 
connected in series. Each single-stage FNN module 

consist of six layers, which contains fuzzy inference 
and training units. A single-stage FNN module will be 
described with Fig. 3. In this study, one of the fuzzy 
inference methods, the Takagi-Sugeno-type FIS was 
used. Using the Takagi-Sugeno-type FIS, an arbitrary 
i -th rule of each stage of the CFNN can be expressed 
as Eq. (1). 
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where g indicates the stage number, ( )g

ijA k  is the 
membership function of the j -th input variable for the 
i -th fuzzy rule at the stage g ( 1,  2, ,   ;  i n n=   is the 
number of fuzzy rules), and ˆ ( )i

gy k is the output of the  
i -th fuzzy rule at the stage g  [4]. The i -th fuzzy rule 
at the stage g is expressed as Eq. (2). 
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Fig. 3. First stage FNN module [4] 
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The output of the first stage FNN module using the 
Takagi-Sugeno-type can be expressed as Eq. (3). 
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As shown in Fig. 3, the input values of the first layer 

are simply passed to the input of the next layer. Each 
node in the second layer implements membership 
function, and its output is the corresponding 
membership value of the input variable connected to it. 
A bell-shaped function is adopted in Eq. (4). The each 
node in third layer multiplies the membership function 
values from the second layer and the output of this layer 
is expressed as Eq. (5). And the fourth layer performs 
normalization using Eq. (6). The nodes of the fifth layer 
generate the output of each fuzzy if then-  rule. Finally, 
the last layer aggregates all the fuzzy if then-  rules and 
is expressed as Eq. (3) [4].  

The output of the first FNN module is expressed as 
the vector product as shown in Eq. (7). 
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The vector q  is a consequent parameter vector that 

has ( 1)m n+  dimensions, and the vector ( )kw is 
composed with input data and membership function 
values. The predicted outputs derived from Eq. (7) are 
expressed as Eq. (10) [4]. 
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3.2 Simplified CFNN Model 
 

The SCFNN model is a simplified model of CFNN 
model. Only initial input data and the output value of 
the previous stage FNN module is applied to the next 
stage, as shown in Fig. 4. This process is repeated g 
times to optimize the output of the each FNN module. 
The SCFNN model simplifies complexly connected 
CFNN structures, leading to faster computations and 
similar performance. 
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Fig. 4. Architecture of the SCFNN model 
 

In the SCFNN model, the if then-  rule of the 
stage g is expressed as Eq. (12). 
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3.3 SCFNN Optimization 
 

The developed SCFNN model is optimized by a 
genetic algorithm and the least squares method. The 
antecedent parameters included in the fuzzy 
membership function are determined by a genetic 
algorithm and the consequent parameter vector q  is 
optimized by the least squares method [3]. 

Furthermore, Some researchers used genetic 
algorithm to develop fuzzy systems, finding appropriate  
membership functions and fuzzy rule sets [5]. In the 
genetic algorithm, the following fitness function is 
determined to minimize root-mean-square (RMS) errors. 
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As shown in Eq. (14) and (15), T is the number of 

training data and  V is the number of verification data. 
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Consequent parameter q  is computed to minimize an 
objective function. This objective function is 
represented by the squared error between the target 
value ( )y k  and the estimated value ˆ( )y k .  
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4. Results of the Collapse Moment Estimation 
 

The data obtained by performing the FEA were used 
to train and verify the SCFNN model to predict the 
collapse moment of the wall-thinned defect in the pipe 
bends and elbows. The result is expressed as Table Ⅱ. 
The results show the prediction performance of the 
SCFNN model, which simplified the existing CFNN 
model, by the RMS error. The developed SCFNN 
model at various defect locations predicted the collapse 
moments for the wall-thinned defect fairly accurately. 
 

Table Ⅱ: Estimation Results of the Collapse Moments by 
the SCFNN Models 

Defect 
location 

Development data Test data 
Relative 

RMS 
error 
(%) 

Relative 
Max. 
error 
(%) 

Relative 
RMS 
error 
(%) 

Relative 
Max. 
error 
(%) 

Extrados 0.2711 2.2955 0.2890 1.1094 
Intrados 0.3256 5.5831 0.4713 2.7423 
Crown 0.2222 1.1112 0.4848 0.8910 
 

5. Conclusions 
 

In this paper, the SCFNN model was designed to 
estimate the collapse moment of the pipe bends and the 
elbows in the piping systems. The data on wall-thinned 
bends and elbows obtained through FEM were used to 
predict the collapse moment. The SCFNN model was 
developed and verified using independent development 
data and test data sets. The overall RMS errors for 
development and test data are less than 0.5%. The 
developed SCFNN model estimated the collapse 
moments of the bends and elbows quickly and quite 
accurately. Therefore, these results can be applied to 
assess the integrity of wall-thinned defects.  
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