

Road to Build Radiation Detector and Imager

Wonho Lee

School of Health and Environmental Science Korea University

- I. Definition of Radiation, Radiation Detection and Measurement
- **II**. Important factors to Build Radiation Devices
- **III.** Researches for Radiation Devices in Korea
- IV. Researches of Our (RMI) Lab. in Korea University
- V. Conclusion and Discussion

Definition

What is Radiation?

"Particle or wave transmitting in space."

Particle or wave transmitting in space."

A stone is a particle...., But a Radiation ?

No! It should be <u>subatomic</u>.

"Particle or wave transmitting in space."

Sound is a kind of waves...., But a Radiation ?

No! It cannot transmit in vacuum.

"Subatomic particle or wave transmitting in space including vacuum."

What is Detection?

"Extraction of particular information from a larger stream of information without specific cooperation from or synchronization with the sender"

Then, What is Radiation Detection?

What is Measurement?

"Assignment of numbers to objects or events"

Then, What is Radiation Measurement?

How to Detect

Can you see radiation?

If not, how to see?

Make the Invisible Radiations to Visible

- Convert to electron and measure by electronics
- Convert to light and measure (or see) it
- Changed Chemical property (Color)
- Miscellaneous (Temperature, Damage, Fission)

- **1. Convert to electron and measure by electronics** . Gas: ionization chamber, proportional and GM tube
 - . Solid: Semiconductor, Scintillator (?)
- 2. Convert to light and measure (or see) it . Gas, Liquid, Solid: Scintillator, TLD
- 3. Measure change in chemical property (color)

 Liquid: Fricke and cerium dosimeter
 Solid: Glass dosimeter, X-ray film

4. Miscellaneous

. Cerenkov*, Fission chamber, Damage, Superconductor

Measurement

Important Factors to Build Radiation Devices

KOREA UNIVERSITY **to Build Radiation Devices**

Software

Electronics

Important Factors to Build Radiation Devices

Physics: Relatively Well known

Detector Material: Needs Time and Technique

Software: Commercially wide spread

Electronics: Commercial Devices but ASIC is unique skill

KOREA UNIVERSITY **to Build Radiation Devices**

Material

- . Purity of Base Material (CdZnTe from Battery industry)
- . Property of Tools such as glass tubes
- . High performance of Devices -> Cost
- . Time and Labor intensive (Find the Best conditions)
- . Not only Idea but Technique (Sealing, Remove impurity)

Electronics

- . Many Commercial Devices
- . Many Custom-made-electronics applied for PMT, SiPM
- . Only a few ASIC to process a number of small signals Laborious and Limited Market (IDEAS, BNL, Kromek...)

Researches for Radiation Devices in KOREA

KOREA UNIVERSITY **Discovery of TI based scintillators**

KNU group started a pioneer work in 2009 on TI-based high-Z compounds and published TI₂LiGdCI₆:Ce³⁺ paper as a first TI-based scintillator in 2015 and presented TI₂LiYCI₆:Ce³⁺ SCINT2015.

Courtesy by Prof. Hongju Kim

KOREA UNIVERSITY New crystal scintillators 2018 by KNU

	atomic number	(g/cm3)	(ph/MeV)	(ns)
NaI(TI)	50.8	3.67	38000	250
CsI(TI)	54	4.51	52000	1000
BGO	75.2	7.13	9000	300
LYSO	65	7.1	33000	40
$Cs_2HfCl_6^{(1)}$	58	3.86	54000	4100
Tl ₂ ZrCl ₆ ⁽²⁾	69	4.65	47000	2700
TI ₂ HfCl ₆	71	5.25	32000	1000
LaBr₃(Ce)	44.1	5.08	89,000	16

Courtesy by Prof. Hongju Kim

KOREA UNIVERSITY New semiconductor by Korea Univ.

1. Furnace

2. Ingot

3. Wire Sawing

4. Polishing

100 110 120 130 140

5. Wafer

6. Detector (15mm

- . CZT 단결정 성장 -> Cd 증기압이 가장 높아 Cd 빈자리 생성
- . Cd 빈자리 보상을 위해 In, Al, Cl불순물을 도핑
- -> 불순물은 전기적 특성을 저해하고, 구조적인 결함을 생성
 -> Cd 빈자리 결함농도를 낮출 수 있다면 불순물의 양도 감소됨.
 . Se의 녹는점은 Cd 보다 낮아, Se를 첨가하면 Cd 빈자리가 감소.
 . CdZnTeSe 단결정 성장에 대한 예비 실험 시 -> 긍정적 결과

CdZnTeSe 단결정 결함 TEM사진 Am-241 감마 스펙트럼

- . CdZnTe에 비해 dislocation 결함이 대략 10-15배 작음을 확인.
- . 전기적 특성에 결정적인 Te inclusion 분포 및 크기가 위치에 따라 다름->연구대상 . CdSe 재료의 순도를 높여, CdZnTe<mark>Se</mark> 단결정을 성장할 경우,
- . 추가 연구를 통해 CdZnTe의 몇몇 단점을 극복할 수 있을 것으로 판단됨.

KOREA Device Development by Korea Univ.

초고분해능 방사선 검출기 예시

- 세계 최소형 핵의학(PET) 0.4 mm pixel array 검출기 개발
- 24x24 어레이 알고리즘으로 구별
- IEEE TNS, IEEE TRPMS 등 게재

세계 최고분해능 핵의학 검출기 개발

방사선 검출기 회로 및 데이터획득장치 개발

- 각종 방사선 검출기용 회로(ASIC주문형직접회로 포함) 및 데이터 획득 장치 (DAQ) 개발 등
- IEEE TNS, NIMA 등 논문 게재, 2018 ISOCC 국제학회 Best poster award 수상

best poster award

새로운 방사선 검출기 개발 - 고성능 time-of-flight PET 검출기 개발

- 극한 환경(원전중대사고)용 방사선 검출기 개발 등
- NIMA, Phys. Med. Biol., Med. Phys. 등 다수 게재

Courtesy by Prof. Jung-Yeol Yeom

섬광결정 성장 - uPD 및 브리지먼 기법 이용한 섬광결정 성장 - 섬광체 가공, 후처리 및 표면 처리

각종 신호 처리 알고리듬 개발

- Pulse shape discriminator (PSD, 파형구별법)을 이용한 감마-중성자 구별

- 고분해능 핵의학 검출기 depth-of-interaction (반응깊이) 구별 알고리듬 등

uPD장비

Bridgman장비

섬광결정

²⁰⁰ 400 600 Energy (keven)⁰⁰ 1200 1400 중성자, 감마 구별 결과

2017 방사선방어학회 우수논문

시뮬레이션 및 영상재구성

- GATE를 이용한 Gamma CT용 collimator 설계

- 핵의학영상기기 time-of-flight (TOF) 영상재구성 등

감마 CT용 collimator 시뮬레이션 결과

Courtesy by Prof. Jung-Yeol Yeom

Radiation Imager by JeJu Univ.

12 \times 12 SiPM pixel array and 4 \times 4 \times 20 mm³ pixelated CsI(Tl)

Detector system including DAQ board

MURA mask fabricated with a 3D printer and 20 mm thick tungsten pieces

21 \times 21 MURA mask pattern (a) and its auto-correlated function plot with decoding pattern as delta function

RSI 89, 033106 (2018) Prof. Manhee Jeong

Radiation Imager by JeJu Univ.

(b)

Reconstructed image with the MLEM reconstruction method

RSI 89, 033106 (2018) Prof. Manhee Jeong

Radiation Imager by Sejong Univ.

- Rotational Modulation Collimator (RMC)
 - Originally developed for X-ray and solar flare imaging in astronomy.
 - Does not require a position-sensitive radiation detector.
 - As collimators rotate, the open area made by slits change over time.

PSD-capable Scintillators

Radiation Imager by Sejong Univ.

감마선원 계측 및 영상화 실험

감마선원을 이용한 RMC 영상화 실험
비대칭 집속기 사용 (Pb 1 cm+ BPE 0.2 cm)
RMC와 방사선원 사이 거리: 1 m
측정 선원: ¹³⁷Cs 10.23 μCi, ¹³³Ba 10.64 μCi (reference date 2016-04-01)

<감마선원 계측 및 영상화 실험>

<Cs-137 선원에 대한 회전 변조 패턴>

<재구성된 방사선원 분포 영상>

MLEM iteration 5,000회

Radiation Imager by Sejong Univ.

선원 세기/타입 변화에 따른 변조패턴

● 감마선원을 이용한 RMC 영상화 실험

- 선원위치: (r, θ, φ)=(25 cm, 30°, 180°),

(25 cm, 40°, 180°)

- 측정 선원: ¹³³Ba 89.52 µCi (D-type source, reference date 2018-08-01)
- Dwell time: 10 min

Courtesy by Prof. Kihyun Kim

〈감마선원 계측 및 영상화 실험〉

Intrinsic Efficiency : 4.67 x 10⁻⁴

Wonho Lee and Taewoong Lee, 2011, NIMA, 652, 33

Taewoong Lee and Wonho Lee., 2014, NIMA 767, No.11, 5

Taewoong Lee and Wonho Lee., 2014, NIMA 767, No.11, 5

Coded mask made by a scintillator array (BGO)

Taewoong Lee, Wonho Lee*, 2014, IEEE TNS, **61**, No.1, 654-662

Taewoong Lee and Wonho Lee* 2014, ARI, **90**, 102-108

Three 662 keV sources

Current Researches of RMI Lab in Korea Univ.

FXCT: Schematic Diagram

FXCT System Photos

Chanyeon et al, IEEE TNS, 63, NO. 3, JUNE 2016

Chanyeon et al, IEEE TNS, 63, NO. 3, JUNE 2016

Detectable Depth

Dino motorial	thickness [mm]							
Pipe material	0.7	1.5	2.25	3				
PVC	Ο	Ο	Ο	0				
Al	Ο	Ο	Ο	0				
Stainless Steel	Ο	Ο	Х	Х				
Cu	Ο	Х	Х	Х				

KOREA UNIVERSITY FXCT Experiment (1st -> 2nd Generation)

Calibrated Full Pixel Data

x 10[′] 2.5 **1** st 8.2% at 122keV Counts Counts Detector AJAT 서운세과장 0.5 . 0 L 0 50 100 150 $\times 10^{6}$ 3 1 % at 122keV 2.5 2nd Counts (Arb. Unit) 1.2 1 Detector HEXITEC 0.5 0 20 40 60 120 160 180 200 80 100 140 Energy (keV)

Even if $\Delta Z=1$, they are discriminated from each other!

Detected and Analyzed Materials

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	H																	2He
2	₉ L1	₄Be											₅B	δC	₇ N	ο _s Ο	۶F	10Ne
3	₁₁ Na	₁₀ Mg											15Al	14St	₁₅ P	₁₆ S	Cl	18Ar.
4	19K	₂₀ Ca	21SC	22Ti	₂₃ V	24CI	25Mn	25E9	2200	28N1	29CU	20Zn	a1Ga	22G.E	23AS	34Se	35BL	^{ss} Kr
5	#Rb	32SI	₃₉ Y	40Zr	мNb	A2MO	J.T.C.	"Ru	₄₅Rh	.₄₅Pd	aAs.	₄₂Cd	⊿₀In	50SD	51SD	52 Te	53I	₅₄Xe
6	55C3	₅₆ Ba	s:La	72Hf	₇₃ Ta	74W	25Re	75 <mark>0.3</mark>	27. Ir	₇₈ ₽t	₂₈ Au	soHg	91Tl	22PD	asB1	94 P.O .	<mark>≉5At</mark>	₀₅Rn
7	s⊐Er	∞Ra	_{se} Ac	JosRf	105Db	BZaot	107 Bh	102HS	100Mt	110D3	Rg	112CD	113Uut	114 Uuq	115 Uup	116Uuh	117Uus	118 <mark>Uu</mark> o
란탄좄				5ªCe	59Pr	50Nd	sıPm	₆₂ Sm	63Eu	54Gd	65.TD	66Dy	67.HO	59Er	59.Tm	20XD	21Lu	
악티늄족				mTh	₉₁ Pa	₉₂ U	esND	₀₄Pu	₀₅Am	₅.Cm	an Blk	₀₀Cf	mES	100Fm	101Md	100 Not	1.03Lr	

	연구실 보유		구매 <u>진행중</u>		화합물 형태 보유		측정 불가		미구매예정 (가격)		상업적 취급 X
--	--------	--	---------------	--	-----------	--	-------	--	---------------	--	----------

KOREA UNIVERSITY FXCT Experiment (2nd Generation)

- 유약분석 결과

유약	구성성분	
투명유	Ti, Zn, Ba, Pr	
상아철	Ti, Fe, Ba, Gd	
민트결정	Ti, Fe, Cu, Ba	
진주유	Ti, Nb, Ba	
옥색유	Ti, Nb	
루호유백	Ti, Nb, Ba, Pr	
백애트	Nb	

Cold 555

- Purse clip

KOREA

UNIVERSITY

1200

1000

- Gold Plate

KOREA

UNIVERSITY

- Mobile FXCT

Portable X-ray tube (50 kV), Field Application

CdZnTe 4π Compton Imager

- Rena-miniTM development kit with pixelated CZT from Kromek

Parameter	Description/Value
Sensor type	Cadmium Zinc Telluride
Sensor size	$20 \text{ mm} \times 20 \text{ mm} \times 5 \text{ mm}$
	(8 × 8 pixel pattern)
Energy range	20 keV - 3 MeV
Channel	64 channels for anode
	1 channel for cathode
	(total 72 channels available)
Timing resolution	≤10 ns
Maximum count rate	10 ⁵ count/s
Power consumption	≤6 mW/channel

Total energy spectrum after drift time correction

CdZnTe 4π Compton Imager

Image reconstruction for offset source (¹³⁷Cs)

Offset angle	FWHM	Source position (ERROR)	Intrinsic efficiency
0 °	8.15°	0° (0%)	6.70×10^{-4}
10°	8.37 °	9° (10%)	6.11×10^{-4}
20 °	8.51°	16.2° (19%)	6.15×10^{-4}
30°	9.00°	27° (10%)	5.84×10^{-4}
40 °	12.74°	32.4° (19%)	5.83×10^{-4}

CdZnTe 4π Compton Imager

Image reconstruction for two ¹³⁷Cs sources

Offset angle	FWHM	Source position (ERROR)	Intrinsic efficiency
10°	8.10 °	7.2° (28%)	7.11×10^{-4}
	7.58°	9° (10%)	
20 °	8.13°	14.4° (28%)	7.07×10^{-4}
	7.54°	16.2° (19%)	
30 °	7.56°	23.4° (22%)	5.76×10^{-4}
	7.20 °	25.2° (16%)	
40 °	7.66°	32.4° (19%)	4.87×10^{-4}
	7.04 °	32.4° (19%)	

Image reconstruction for multiple sources (Simultaneous measurement)

It is difficult to make a very large one. (>6 cm³)

But it is easy make a small one. ($\cong 0.5 \text{ cm}^3$)

and Make a Large Array by Segmentation! (≅ 20 cm³) with specialized electrodes

CdZnTe 4π Compton Imager

BNL

Detector Array

ASIC and **HV** connection

CdZnTe 4π Compton Imager

CdZnTe 4π **Compton Imager**

1. Furnace

2. Ingot

3. Wire Sawing

4. Polishing

100 110 120 130 140

5. Wafer

6. Detector (15mm)

CdZnTe 4π **Compton Imager**

Schematic Diagram

Assembled System

CdZnTe 4π **Compton Imager**

Assembled System

Energy Spectrums (1st 2nd and Sum events)

4π Reconstructed Image (Side exposure, 10 min, 10 uCi, 5 cm)

- Detection system is a Base for Radiation Application
- Researches for Detection System in Korea
- Current Research in RMI of Korea Univ.
- Specially Demanding Points in Korea Technology
 - Detector Material
 - Analog Signal Integrated Circuit (ASIC)
 - More than 20 30 years of Research on the Topics
 - . Compete with Small but Strong Companies
 - . Domestic Market is limited

Solution?

Solution?

Continuous Support

- World Leading Small Companies needs >30 years
- Technician as well as Idea
- Venture (Startup) Companies (Univ.)

Cooperation

- Academy-Research-Industry
- Connection between Researchers
- No Negative Competition <- Large Gross Sum
- International Research