
Transactions of the Korean Nuclear Society Autumn Meeting

Goyang, Korea, October 24-25, 2019

A Performance Evaluation Method of a Machine Learning Programming of Simple

Logistic Regression

Yong Suk Suh*, Seung Ki Shin, Dane Baang, Sang Mun Seo, Jong Bok Lee

Research Reactor System Design Div., Korea Atomic Energy Research Institute (KAERI), Daedeok-Daero 989-

111, Yuseong-Gu, Daejeon, 34057, Korea
*Corresponding author: yssuh@kaeri.re.kr

1. Introduction

A machine learning programming (MLP) of simple

logistic regression (SLR) was briefly reviewed in

previous paper, which described the derivation of a

logistic function and a cost function [1]. The SLR is

used to classify the independent data into binary state:

true (1) or false (0). The MLP of SLR uses a sigmoid

function to predict response (dependent) data of trained

(independent) data. The MLP of SLR can be applied in

nuclear power plants to classify measured data (events

or symptoms) into the binary state on the basis of

experience, analysis or engineering judgment. The

result of the MLP of SLR depends on the initial value,

learning rate and epoch [1].

This paper briefly reviews a method for evaluating the

performance of the MLP of SLR. The results in this

paper are generated using Python [2] programming

language and Tensorflow [3] and Scikit-learn [4] library

under Anaconda [5] development environment for

programming the MLP of SLR.

2. Performance evaluation of MLP of SLR

A threshold (or a cut-off value) in the SLR is used as

a decision value to classify the independent data into

binary state: true (1) or false (0). Thus, the binary state

of independent data depends on the threshold. In order

to explain this, we assume four test cases Case-1, 2, 3

and 4 with arbitrary x values as independent data and y

values as dependent data (Table 1). When we run the

MLP of SLR with initial value set to 1, learning rate set

to 0.01 and epoch set to 1000 for the four assumed test

cases, we obtain four S-shaped curves (Fig. 1).

Table 1: Test cases for logistic programming

Case-1
x -4 -3 -2 -1 0 1 2 3 4 5

y 0 0 0 0 0 1 1 1 1 1

Case-2
x -4 -3 -2 -1 0 1 2 3 4 5

y 0 0 1 1 1 1 1 1 1 1

Case-3
x -4 -3 -2 -1 0 1 2 3 4 5

y 0 0 0 0 0 1 0 1 1 1

Case-4
x -4 -3 -2 -1 0 1 2 3 4 5

y 0 0 0 0 0 1 0 0 1 1

When we assume three thresholds set to 0.1, 0.5 and

0.9 represented by the black dotted lines shown in Fig.

1, we obtain the results of SLR according to the

thresholds (Table 2). Thus, the thresholds are used as

decision values to convert the probabilities into the

binary states. In Table 2, values in “y” are trained data

and values in “𝑦0.1̂” are predicted data when threshold

is set to 0.1, values in “ 𝑦0.5̂” are predicted data when

threshold is set to 0.5, and so on.

Fig. 1. S-shaped curves of MLP of SLR

Table 2: Predicted data at thresholds of 0.1, 0.5, 0.9

Case-1

y 0 0 0 0 0 1 1 1 1 1

𝑦0.1̂ 0 0 0 0 1 1 1 1 1 1

𝑦0.5̂ 0 0 0 0 0 1 1 1 1 1

𝑦0.9̂ 0 0 0 0 0 1 1 1 1 1

Case-2

y 0 0 1 1 1 1 1 1 1 1

𝑦0.1̂ 0 1 1 1 1 1 1 1 1 1

𝑦0.5̂ 0 0 0 0 0 1 1 1 1 1

𝑦0.9̂ 0 0 0 0 0 0 0 0 1 1

Case-3

y 0 0 0 0 0 1 0 1 1 1

𝑦0.1̂ 0 0 1 1 1 1 1 1 1 1

𝑦0.5̂ 0 0 0 0 0 1 1 1 1 1

𝑦0.9̂ 0 0 0 0 0 0 0 1 1 1

Case-4

y 0 0 0 0 0 1 0 0 1 1

𝑦0.1̂ 1 1 1 1 1 1 1 1 1 1

𝑦0.5̂ 0 0 0 0 0 1 1 1 1 1

𝑦0.9̂ 0 0 0 0 0 0 0 0 0 0

In Table 2, the yellow highlighted data do not match

their y data counterparts. The test case Case-1 shows

accurate classifications because the trained y data are

well classified. The Case-2 shows worse classification

than the Case-1 because the y data are biased to 1 but

better than the Case-3 and 4 because no false y data exist.

The Case-3 shows better classification than the Case-4

because less false y data exist.

Transactions of the Korean Nuclear Society Autumn Meeting

Goyang, Korea, October 24-25, 2019

A confusion matrix is used as a metric to evaluate the

predicted data generated by a logistic regression [6]. The

confusion matrix is defined as a specific table layout that

shows the performance of a supervised MLP of logistic

regression (Table 3). The performance of an

unsupervised MLP of logistic regression can be shown

using the matching matrix [6]. This paper only considers

the supervised MLP of logistic regression.

As shown in Table 3, there are four cases in evaluating

the outcomes of SLR: true positive (TP), false positive

(FP), true negative (TN), and false negative (FN). TP

means that the SLR correctly predicts the true outcome

as actual data is true. FP means that the SLR incorrectly

predicts the true outcome as actual data is false, which

is called a false alarm and Type I error. TN means that

the SLR correctly predicts the false outcome as actual

data is false, which is Type II error. FN means that the

SLR incorrectly predicts the false outcome as actual

data is true.

There are various measurement terms: accuracy,

precision, sensitivity, specificity, and so on [6]. In order

to explain the terms, we assume that the SLR predicts

six true and four false data from ten actual data

containing five true and five false data (Table 3).

Table 3: Confusion matrix (typical example)

 Actual data=10

True=5 False=5

Predicted

data=10

True=6 TP=4 FP=2

False=4 FN=1 TN=3

The accuracy is overall correctness of prediction by

calculating: accuracy = (TP + TN) / (TP + FP + TN +

FN) = 0.7.

The precision is overall correctness of true prediction

by calculating: precision = (TP) / (TP + FP) = 0.67.

The sensitivity (called a recall) is how many actual

true data are predicted as true data by calculating:

sensitivity = TP / (TP + FN) = 0.8.

The specificity is how many actual false data are

predicted as false data by calculating: specificity = TN /

(TN + FP) = 0.6.

Table 4 shows a confusion matrix for Case-1, 2, 3 and

4 of Table 1. In Table 4, the FP and FN values are

highlighted in yellow.

Table 4: Confusion matrix of Case-1, 2, 3 and 4
Case Threshold=0.1 Threshold=0.5 Threshold=0.9

1
TP=5 FP=1 TP=5 FP=0 TP=5 FP=0

FN=0 TN=4 FN=0 TN=5 FN=0 TN=5

2
TP=8 FP=1 TP=5 FP=0 TP=2 FP=0

FN=0 TN=1 FN=3 TN=2 FN=6 TN=2

3
TP=4 FP=4 TP=4 FP=1 TP=3 FP=0

FN=0 TN=2 FN=0 TN=5 FN=1 TN=6

4
TP=3 FP=7 TP=3 FP=2 TP=5 FP=0

FN=0 TN=0 FN=0 TN=5 FN=3 TN=2

Table 5 shows the accuracy, precision, sensitivity and

specificity for Case-1, 2, 3 and 4 from the confusion

matrix of Table 4.

Table 5: Performance matrix of Case-1, 2, 3 and 4
Case Threshold Accuracy Precision Sensitivity Specificity

1

0.1 9/10 5/6 5/5 4/5

0.5 10/10 5/5 5/5 5/5

0.9 10/10 5/5 5/5 5/5

2

0.1 9/10 8/9 8/8 1/2

0.5 7/10 5/5 5/8 2/2

0.9 4/10 2/2 2/8 2/2

3

0.1 6/10 4/8 4/4 2/6

0.5 9/10 4/5 4/4 5/6

0.9 9/10 3/3 3/4 6/6

4

0.1 3/10 3/10 3/3 0/7

0.5 8/10 3/5 3/3 5/7

0.9 7/10 5/5 5/8 2/2

A receiver operating characteristic (ROC) curve is

used to find a proper threshold. ROC is a method that

came from a field called a signal detection theory

developed during World War II for the analysis of radar

images [7]. An ROC curve is a plot of true positive rate

(TPR) against false positive rate (FPR). TPR is defined

as a rate of sensitivity. FPR is defined as a rate of one

minus specificity (1-specificity). We can easily plot the

ROC curves of Case-3 and 4 with the performance

matrix of Table 5 (Fig. 2). The pairs of TPR and FPR of

Case-3 are (1.0, 0.66), (1.0, 0.16), and (0.75, 0.0) at

threshold 0.1, 0.5 and 0.9, respectively. The pairs of

TPR and FPR of Case-4 are (1.0, 1.0), (1.0, 0.28), and

(0.61, 0.0) at threshold 0.1, 0.5 and 0.9, respectively.

Among the three thresholds, the threshold of 0.9

shows the best performance in terms of achieving a high

TPR and low FPR.

Fig. 2. ROC curves of Case-3 and 4

A Scikit-learn library can be used to easily plot the

ROC curves (Fig. 3), which is free software for the

Python programming language. Fig. 3 shows ROC

curves of the Case-1, 2, 3 and 4. The Scikit-learn library

selected thresholds as shown in Table 6 to plot the ROC

curves.

The library also calculates the area under curve

(AUC). The bigger the AUC is, the better the outcomes

generated by the model.

Transactions of the Korean Nuclear Society Autumn Meeting

Goyang, Korea, October 24-25, 2019

Table 6: Thresholds selected by Scikit-learn library

Case Thresholds

1 1.99 0.99 0.96 2.3e-6

2 1.96 0.96 0.21 0.07

3 1.98 0.98 0.93 0.84 0.71 0.03

4 1.89 0.89 0.85 0.71 0.61 0.15

Fig. 3. ROC curves and AUC of Case-1, 2, 3 and 4

A good threshold can be found in an area representing

a high TPR and low FPR. From Fig. 3, we can select a

proper threshold: 0.9, 0.8 and 0.7 for Case-1, 2 and 3,

respectively. After the predicted data are generated with

some assumed good thresholds, the actual good threshold

can be found (Table 7). For Case-1, an actual good

threshold lies between 0.5 and 0.9. For Case-2, the

threshold is 0.2. For Case-3, the threshold 0.9 is better

than 0.5 because taking false negative outcome is better

than taking false positive outcome. For Case-4, the actual

good threshold is 0.8. These thresholds make us obtain a

high TPR and low FPR rate.

Table 7: Predicted data at each threshold

Case-1

y 0 0 0 0 0 1 1 1 1 1

𝑦0.1̂ 0 0 0 0 1 1 1 1 1 1

𝑦0.5̂ 0 0 0 0 0 1 1 1 1 1

𝑦0.9̂ 0 0 0 0 0 1 1 1 1 1

Case-2

y 0 0 1 1 1 1 1 1 1 1

𝑦0.1̂ 0 1 1 1 1 1 1 1 1 1

𝑦0.2̂ 0 0 1 1 1 1 1 1 1 1

𝑦0.5̂ 0 0 0 0 0 1 1 1 1 1

𝑦0.9̂ 0 0 0 0 0 0 0 0 1 1

Case-3

y 0 0 0 0 0 1 0 1 1 1

𝑦0.1̂ 0 0 1 1 1 1 1 1 1 1

𝑦0.5̂ 0 0 0 0 0 1 1 1 1 1

𝑦0.7̂ 0 0 0 0 0 0 1 1 1 1

𝑦0.8̂ 0 0 0 0 0 0 1 1 1 1

𝑦0.9̂ 0 0 0 0 0 0 0 1 1 1

Case-4

y 0 0 0 0 0 1 0 0 1 1

𝑦0.1̂ 1 1 1 1 1 1 1 1 1 1

𝑦0.5̂ 0 0 0 0 0 1 1 1 1 1

𝑦0.6̂ 0 0 0 0 0 1 1 1 1 1

𝑦0.7̂ 0 0 0 0 0 0 1 1 1 1

𝑦0.8̂ 0 0 0 0 0 0 0 0 1 1

𝑦0.9̂ 0 0 0 0 0 0 0 0 0 0

3. Conclusions

The results of a machine learning programming (MLP)

of simple logistic regression (SLR) have been evaluated

using a confusion matrix and receiver operating

characteristic (ROC) curves. A Scikit-learn library can

be used to plot the ROC curves. A proper threshold can

be found in an area representing a high true positive rate

(TPR) and low false positive rate (FPR) in the ROC

curves. The performance evaluation methods for

multiple (multi-variable) logistic regression and

multinomial (multi-class) logistic regression need to be

studied in the future.

REFERENCES

[1] Yong Suk Suh, et al., A Brief Review of a Machine

Learning Programming of Simple Logistic Regression,

Transactions of the Korean Nuclear Society Autumn

Meeting, Yeosu, Korea, October 25-26, 2018.

[2] https://www.python.org/

[3] https://www.tensorflow.org/

[4] https://www. scikit-learn.org/

[5] https://www.anaconda.com/

[6] https://en.wikipedia.org/wiki/Confusion_matrix

[7] https://en.wikipedia.org/wiki/Receiver_operating_

Characteristic

https://www.python.org/
https://www.tensorflow.org/
https://www.anaconda.com/
https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/

