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1. Introduction  

A machine learning programming (MLP) of simple 

logistic regression (SLR) was briefly reviewed in 

previous paper, which described the derivation of a 

logistic function and a cost function [1]. The SLR is 

used to classify the independent data into binary state: 

true (1) or false (0). The MLP of SLR uses a sigmoid 

function to predict response (dependent) data of trained 

(independent) data. The MLP of SLR can be applied in 

nuclear power plants to classify measured data (events 

or symptoms) into the binary state on the basis of 

experience, analysis or engineering judgment. The 

result of the MLP of SLR depends on the initial value, 

learning rate and epoch [1].  

This paper briefly reviews a method for evaluating the 

performance of the MLP of SLR. The results in this 

paper are generated using Python [2] programming 

language and Tensorflow [3] and Scikit-learn [4] library 

under Anaconda [5] development environment for 

programming the MLP of SLR.  

2. Performance evaluation of MLP of SLR 

A threshold (or a cut-off value) in the SLR is used as 

a decision value to classify the independent data into 

binary state: true (1) or false (0). Thus, the binary state 

of independent data depends on the threshold. In order 

to explain this, we assume four test cases Case-1, 2, 3 

and 4 with arbitrary x values as independent data and y 

values as dependent data (Table 1). When we run the 

MLP of SLR with initial value set to 1, learning rate set 

to 0.01 and epoch set to 1000 for the four assumed test 

cases, we obtain four S-shaped curves (Fig. 1). 

 

Table 1: Test cases for logistic programming   

Case-1 
x -4  -3  -2  -1  0 1  2  3  4  5  

y  0  0  0  0  0  1  1  1  1  1  

Case-2 
x  -4  -3  -2  -1  0  1  2  3  4  5  

y  0  0  1 1 1  1  1  1 1  1  

Case-3 
x  -4  -3  -2  -1  0  1  2  3  4  5  

y  0  0  0  0  0  1  0  1  1  1  

Case-4 
x  -4  -3  -2  -1  0  1  2  3  4  5  

y 0  0  0  0  0  1  0  0  1  1  

 

When we assume three thresholds set to 0.1, 0.5 and 

0.9 represented by the black dotted lines shown in Fig. 

1, we obtain the results of SLR according to the 

thresholds (Table 2). Thus, the thresholds are used as 

decision values to convert the probabilities into the 

binary states. In Table 2, values in “y” are trained data 

and values in “𝑦0.1̂”  are predicted data when threshold 

is set to 0.1, values in “ 𝑦0.5̂” are predicted data when 

threshold is set to 0.5, and so on. 

 

 
Fig. 1. S-shaped curves of MLP of SLR 

 

Table 2: Predicted data at thresholds of 0.1, 0.5, 0.9   

Case-1 

y 0  0  0  0  0  1  1  1  1  1  

𝑦0.1̂ 0  0  0  0  1  1  1  1  1  1  

𝑦0.5̂ 0  0  0  0  0  1  1  1  1  1  

𝑦0.9̂ 0  0  0  0  0  1  1  1  1  1  

Case-2 

y 0  0  1 1 1  1  1  1 1  1  

𝑦0.1̂ 0  1  1 1 1  1  1  1 1  1  

𝑦0.5̂ 0  0  0  0  0  1  1  1  1  1  

𝑦0.9̂ 0  0  0  0  0  0  0  0  1  1  

Case-3 

y 0  0  0  0  0  1  0  1  1  1  

𝑦0.1̂ 0  0  1 1 1  1  1  1 1  1  

𝑦0.5̂ 0  0  0  0  0  1  1  1  1  1  

𝑦0.9̂ 0  0  0  0  0  0  0  1  1  1  

Case-4 

y 0  0  0  0  0  1  0  0  1  1  

𝑦0.1̂ 1  1  1 1 1  1  1  1 1  1  

𝑦0.5̂ 0  0  0  0  0  1  1  1  1  1  

𝑦0.9̂ 0  0  0  0  0  0  0  0  0  0  

 

In Table 2, the yellow highlighted data do not match 

their y data counterparts. The test case Case-1 shows 

accurate classifications because the trained y data are 

well classified. The Case-2 shows worse classification 

than the Case-1 because the y data are biased to 1 but 

better than the Case-3 and 4 because no false y data exist. 

The Case-3 shows better classification than the Case-4 

because less false y data exist. 
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A confusion matrix is used as a metric to evaluate the 

predicted data generated by a logistic regression [6]. The 

confusion matrix is defined as a specific table layout that 

shows the performance of a supervised MLP of logistic 

regression (Table 3). The performance of an 

unsupervised MLP of logistic regression can be shown 

using the matching matrix [6]. This paper only considers 

the supervised MLP of logistic regression. 

As shown in Table 3, there are four cases in evaluating 

the outcomes of SLR: true positive (TP), false positive 

(FP), true negative (TN), and false negative (FN). TP 

means that the SLR correctly predicts the true outcome 

as actual data is true. FP means that the SLR incorrectly 

predicts the true outcome as actual data is false, which 

is called a false alarm and Type I error. TN means that 

the SLR correctly predicts the false outcome as actual 

data is false, which is Type II error. FN means that the 

SLR incorrectly predicts the false outcome as actual 

data is true.  

There are various measurement terms: accuracy, 

precision, sensitivity, specificity, and so on [6]. In order 

to explain the terms, we assume that the SLR predicts 

six true and four false data from ten actual data 

containing five true and five false data (Table 3). 

 

Table 3: Confusion matrix (typical example) 

 Actual data=10 

True=5 False=5 

Predicted 

data=10 

True=6 TP=4 FP=2 

False=4 FN=1 TN=3 

 

The accuracy is overall correctness of prediction by 

calculating: accuracy = (TP + TN) / (TP + FP + TN + 

FN) = 0.7.  

The precision is overall correctness of true prediction 

by calculating: precision = (TP) / (TP + FP) = 0.67.  

The sensitivity (called a recall) is how many actual 

true data are predicted as true data by calculating: 

sensitivity = TP / (TP + FN) = 0.8. 

The specificity is how many actual false data are 

predicted as false data by calculating: specificity = TN / 

(TN + FP) = 0.6. 

 

Table 4 shows a confusion matrix for Case-1, 2, 3 and 

4 of Table 1. In Table 4, the FP and FN values are 

highlighted in yellow. 

 

Table 4: Confusion matrix of Case-1, 2, 3 and 4 
Case Threshold=0.1 Threshold=0.5 Threshold=0.9 

1 
TP=5 FP=1 TP=5 FP=0 TP=5 FP=0 

FN=0 TN=4 FN=0 TN=5 FN=0 TN=5 

2 
TP=8 FP=1 TP=5 FP=0 TP=2 FP=0 

FN=0 TN=1 FN=3 TN=2 FN=6 TN=2 

3 
TP=4 FP=4 TP=4 FP=1 TP=3 FP=0 

FN=0 TN=2 FN=0 TN=5 FN=1 TN=6 

4 
TP=3 FP=7 TP=3 FP=2 TP=5 FP=0 

FN=0 TN=0 FN=0 TN=5 FN=3 TN=2 

 

Table 5 shows the accuracy, precision, sensitivity and 

specificity for Case-1, 2, 3 and 4 from the confusion 

matrix of Table 4. 

 

Table 5: Performance matrix of Case-1, 2, 3 and 4 
Case Threshold Accuracy Precision Sensitivity Specificity 

1 

0.1 9/10 5/6 5/5 4/5 

0.5 10/10 5/5 5/5 5/5 

0.9 10/10 5/5 5/5 5/5 

2 

0.1 9/10 8/9 8/8 1/2 

0.5 7/10 5/5 5/8 2/2 

0.9 4/10 2/2 2/8 2/2 

3 

0.1 6/10 4/8 4/4 2/6 

0.5 9/10 4/5 4/4 5/6 

0.9 9/10 3/3 3/4 6/6 

4 

0.1 3/10 3/10 3/3 0/7 

0.5 8/10 3/5 3/3 5/7 

0.9 7/10 5/5 5/8 2/2 

 

A receiver operating characteristic (ROC) curve is 

used to find a proper threshold. ROC is a method that 

came from a field called a signal detection theory 

developed during World War II for the analysis of radar 

images [7]. An ROC curve is a plot of true positive rate 

(TPR) against false positive rate (FPR). TPR is defined 

as a rate of sensitivity. FPR is defined as a rate of one 

minus specificity (1-specificity). We can easily plot the 

ROC curves of Case-3 and 4 with the performance 

matrix of Table 5 (Fig. 2). The pairs of TPR and FPR of 

Case-3 are (1.0, 0.66), (1.0, 0.16), and (0.75, 0.0) at 

threshold 0.1, 0.5 and 0.9, respectively. The pairs of 

TPR and FPR of Case-4 are (1.0, 1.0), (1.0, 0.28), and 

(0.61, 0.0) at threshold 0.1, 0.5 and 0.9, respectively.  

Among the three thresholds, the threshold of 0.9 

shows the best performance in terms of achieving a high 

TPR and low FPR. 

 

 
Fig. 2. ROC curves of Case-3 and 4 

 

A Scikit-learn library can be used to easily plot the 

ROC curves (Fig. 3), which is free software for the 

Python programming language. Fig. 3 shows ROC 

curves of the Case-1, 2, 3 and 4. The Scikit-learn library 

selected thresholds as shown in Table 6 to plot the ROC 

curves.  

The library also calculates the area under curve 

(AUC). The bigger the AUC is, the better the outcomes 

generated by the model. 
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Table 6: Thresholds selected by Scikit-learn library 

Case Thresholds 

1 1.99 0.99 0.96 2.3e-6   

2 1.96 0.96 0.21 0.07   

3 1.98 0.98 0.93 0.84 0.71 0.03 

4 1.89 0.89 0.85 0.71 0.61 0.15 

 

 
Fig. 3. ROC curves and AUC of Case-1, 2, 3 and 4 

 

A good threshold can be found in an area representing 

a high TPR and low FPR. From Fig. 3, we can select a 

proper threshold: 0.9, 0.8 and 0.7 for Case-1, 2 and 3, 

respectively. After the predicted data are generated with 

some assumed good thresholds, the actual good threshold 

can be found (Table 7). For Case-1, an actual good 

threshold lies between 0.5 and 0.9. For Case-2, the 

threshold is 0.2. For Case-3, the threshold 0.9 is better 

than 0.5 because taking false negative outcome is better 

than taking false positive outcome. For Case-4, the actual 

good threshold is 0.8. These thresholds make us obtain a 

high TPR and low FPR rate. 

 

Table 7: Predicted data at each threshold   

Case-1 

y 0  0  0  0  0  1  1  1  1  1  

𝑦0.1̂ 0  0  0  0  1  1  1  1  1  1  

𝑦0.5̂ 0  0  0  0  0  1  1  1  1  1  

𝑦0.9̂ 0  0  0  0  0  1  1  1  1  1  

Case-2 

y 0  0  1 1 1  1  1  1 1  1  

𝑦0.1̂ 0  1  1 1 1  1  1  1 1  1  

𝑦0.2̂ 0  0   1 1 1  1  1  1 1  1  

𝑦0.5̂ 0  0  0  0  0  1  1  1  1  1  

𝑦0.9̂ 0  0  0  0  0  0  0  0  1  1  

Case-3 

y 0  0  0  0  0  1  0  1  1  1  

𝑦0.1̂ 0  0  1 1 1  1  1  1 1  1  

𝑦0.5̂ 0  0  0  0  0  1  1  1  1  1  

𝑦0.7̂ 0  0  0  0  0  0  1  1  1  1  

𝑦0.8̂ 0  0  0  0  0  0  1  1  1  1  

𝑦0.9̂ 0  0  0  0  0  0  0  1  1  1  

Case-4 

y 0  0  0  0  0  1  0  0  1  1  

𝑦0.1̂ 1  1  1 1 1  1  1  1 1  1  

𝑦0.5̂ 0  0  0  0  0  1  1  1  1  1  

𝑦0.6̂ 0  0  0  0  0  1  1  1  1  1  

𝑦0.7̂ 0  0  0  0  0  0   1  1  1  1  

𝑦0.8̂ 0 0  0  0  0  0  0  0  1  1   

𝑦0.9̂ 0  0  0  0  0  0  0  0  0  0  

 

3. Conclusions  

The results of a machine learning programming (MLP) 

of simple logistic regression (SLR) have been evaluated 

using a confusion matrix and receiver operating 

characteristic (ROC) curves. A Scikit-learn library can 

be used to plot the ROC curves. A proper threshold can 

be found in an area representing a high true positive rate 

(TPR) and low false positive rate (FPR) in the ROC 

curves. The performance evaluation methods for 

multiple (multi-variable) logistic regression and 

multinomial (multi-class) logistic regression need to be 

studied in the future.  
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