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1. Introduction 
 

When the event of an unknown causes in the nuclear 
power plants (NPPs), the operators should watch 
various variables and take appropriate actions in a short 
time. However, there is a high probability of generating 
a human error in order to perform all the tasks in a short 
time. In addition, the instrument’s uncertainty increases 
over time as the accident becomes serious. In case of a 
small Loss of Coolant Accident (LOCA), there is little 
change in measurements which may delay the initial 
action of the operators. If the break size is larger, on the 
other hand, the operator’s action time becomes shorter 
even though the operator can quickly identify the 
accident where the change of the variable is larger. If 
the LOCA persists, it can have significant impacts on 
core integrity, and the leak flow can be utilized as one 
of the criteria for discerning core integrity. Providing 
information on core integrity can reduce human error 
due to increased uncertainty in the instrument and 
emergency. In this study, the leak flow prediction was 
performed using the Deep Fuzzy Neural Network 
(DFNN) method. The DFNN method is based on the 
Fuzzy Neural Network (FNN) method and is layered by 
configuring the FNN as a module. The data were 
obtained using the Nuclear Modulate Accident Analysis 
Program (MAAP) code [1] for an optimized power 
reactor-1000 (OPR1000), and it is assumed that active 
safety injection systems do not actuate for simulations 
of severe accidents caused by LOCA.  

 
2. DFNN Method 

 
The Cascade FNN (CFNN) and Simplified CFNN 

(SCFNN) developed in the previous study were named 
DFNN because it has many similarities with existing 
Deep Neural Network (DNN).  

 
2.1 FNN Module 
 

The FNN module is described as Fig. 1 as one layer 
constituting the DFNN. The FNN module has six 
detailed layers, each of which plays a role. The first 
layer takes the input data and sends it to the next layer. 
The second layer is responsible for passing the obtained 
input data to the Gaussian membership function. 
Through the calculation of the Gaussian membership 
function, each input data is transformed into a specific 
value of membership. The third layer multiplies all the 
membership values of the input data calculated in the 
previous layer. The multiplied value is defined as the 

weight. The fourth layer normalizes the previously 
calculated weights. In the fifth layer, each result of the 
fuzzy rule is generated by multiplying the normalized 
weight by the output of each fuzzy rule. In the last sixth 
layer, the normalized weight is multiplied by the output 
of the fuzzy rule and add it, as shown in equation (1) [2]. 
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 Fig. 1. FNN Module 
 
2.2 DFNN Method 

 
The DNN consists of a combination of two or more 

layers. Analogous to the characteristics of DNN, DFNN 
performs a similar role by putting one FNN module as a 
layer.  

 

Input layer

1st hidden layer 2nd hidden layer nth hidden layer

Output layer

 
Fig. 2. The general structure of DNN 
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Fig. 3. Each structure of DFNN with two types 

 
Figures 2 and 3 show the DNN and DFNN structures, 

respectively, and two structures are similar. DFNN 
consists of two types, CFNN and SCFNN, developed 
from the previous study. The common feature of the two 
types is that the input data enters all FNN modules, and 
the output of the FNN module is reflected as an input 
value to the next module. On the other hand, the 
difference is the reflection of the output from the FNN 
module. In case of CFNN, all the former stage outputs 
from the first module are reflected in a next module, 
whereas in SCFNN, only the very former stage output is 
reflected in the next module [3, 4]. By this difference, in 
case of SCFNN, the input data is smaller than that of 
CFNN, resulting in relatively low complexity and thus a 
small charge on overfitting problems. The difference 
makes a big impact on the time and performance of the 
training. 

The DFNN method in this study used SCFNN 
method and the fuzzy inference system used the Takagi-
Sugeno type. For this type, the value of the fuzzy 
conclusion is the real value rather than the result 
calculated by the membership function [2]. 

 
2.3 Comparison of DFNN and FDNN 

 
According to a study, there is a method called Fuzzy 

Deep Neural Network (FDNN) [5] that combines FNN 
with a hidden layer of DNN. FDNN sends the input data 

into the hidden layer as well as the Membership 
Function layer. The weight and bias calculated through 
the hidden layer are transferred to the next layer. The 
fusion layer combines the output from the previous 
fuzzy rule layer with the weights and bias from the 
hidden layer. The final output layer produces the result. 
Fig. 4 is an overview of the FDNN [5]. 
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Fig. 4. Overview of the FDNN 
 

The two methods are similar in Feed-Forward 
Network and FNN structure, but there are significant 
differences. In case of FDNN, the weight and bias are 
obtained from the hidden layer and combined with the 
values from the fuzzy rule layer in the next layer. 
However, in case of DFNN, each FNN module is sent to 
the next hidden layer after the processing of weight and 
bias as one layer. To improve performance, FDNN 
needs to add the number of rules to the fuzzy rule layer 
and the number of hidden layers. On the other hand, the 
DFNN method extends the number of rules and the 
number of FNN modules. However, the overfitting 
phenomena should be cautioned if it gets too 
complicated. 
 
2.2 Applied data and optimization for DFNN 

 
MAAP code simulations for OPR1000 was 

conducted to obtain the data for DFNN. LOCA data 
were classified into the small break and large break, and 
hot-leg, cold-leg, and steam generator tube (SGT) 
locations. Each data consists of 30 smaller hot-leg and 
cold-leg LOCA types and 170 larger types. SGT 
LOCAs are classified as 100 small and 100 large 
rupture sizes.  

Genetic Algorithm (GA) and least-squares methods 
were used to optimize DFNN. In this study, the GA is 
combined with the least-squares method. The GA is 
used to select the appropriate input variables and to 
optimize the radius of the data cluster. The least-squares 
method is used to calculate the conclusion parameters of 
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the FNN module [3]. In addition, the GA uses the 
fitness function to assign scores to each chromosome in 
the current population and then select the optimal one. 
Probabilities of crossover and mutation which are 
genetic operations in GA, were 100% and 20%, 
respectively, and the population size of parameter 
optimization was set to 20. 

In case of DFNN, as the number of modules increases, 
the complexity and the overfitting can arise. Therefore, 
the GA is also used to prevent overfitting. 

 
3. Prediction Result of Leak Flow 

 
Table I shows the prediction result of RMS and 

maximum errors after training hot-leg LOCA, cold-leg 
LOCA, and SGT rupture (SGTR) using the DFNN 
method. Table I-(a) and (b) show the results for small 
and large break LOCAs, respectively. Table I shows 
that the result of DFNN method is acceptable in 
predicting leak flow. In addition, the RMS error was 
obtained by changing the fuzzy rule, and the optimal 
rule number is 13. Figs. 5-10 show the comparison of 
the actual and predicted values for hot-leg and cold-leg 
LOCAs, and SGTR for both small and large break sizes 
in fuzzy rule 13. 

 
Table I: Performance of the DFNN method 

(a) Small break size LOCA 

Break 
Position 

Development data Test data 

RMS 
Error 
(%) 

Max 
Error 
(%) 

RMS 
Error 
(%) 

Max 
Error 
(%) 

Hot-leg 0.167 3.752 0.031 0.154 
Cold-leg 0.220 4.243 0.182 1.681 

SGT 1.166 41.654 0.363 1.603 
 

(b) Large break size LOCA 

Break 
Position 

Development data Test data 

RMS 
Error 
(%) 

Max 
Error 
(%) 

RMS 
Error 
(%) 

Max 
Error 
(%) 

Hot-leg 0.009 0.233 0.006 0.045 
Cold-leg 0.265 0.495 0.044 0.246 

SGT 0.544 29.149 0.192 1.310 
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Fig. 5. Prediction performance of DFNN method  
for small Hot-leg LOCA in fuzzy rule 13. 
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Fig. 6. Prediction performance of DFNN method  
for large Hot-leg LOCA in fuzzy rule 13. 
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Fig. 7. Prediction performance of DFNN method  

for small Cold-leg LOCA in fuzzy rule 13. 



Transactions of the Korean Nuclear Society Autumn Meeting  
Goyang, Korea, October 24-25, 2019 

 
 

0 90000 180000 270000 360000

0

10

20

30

 Target
 Estimation

Le
ak

 fl
ow

 (k
g/

se
c)

Time (sec)

 
Fig. 8. Prediction performance of DFNN method  
for large Cold-leg LOCA in fuzzy rule 13. 
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Fig. 9. Prediction performance of DFNN method 

for small SGTR in fuzzy rule 13. 
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Fig. 10. Prediction performance of DFNN method  
for large SGTR 

 

Table II shows the performance comparison for a 
single FNN module and DFNN method [6]. In case of a 
small hot-leg LOCA, the RMS error is significantly 
reduced from 8.31% to 0.03%, which is a great 
improvement in terms of accuracy. The number of FNN 
modules used in the small hot-leg LOCA was 14, 
optimized by the fitness function. As a result, higher 
accuracy can be achieved by using multiple FNN 
modules as hidden layers rather than a single FNN 
module. 

Table II: Performance comparison between FNN and 
DFNN 

(a) Test data of small break size LOCA 

 
FNN DFNN 

RMS 
Error (%) 

Max 
Error (%) 

RMS 
Error (%) 

Max 
Error (%) 

Hot-leg 8.31 26.08 0.03 0.15 
Cold-leg 4.71 25.46 0.18 1.68 

SGT 4.51 14.12 0.36 1.60 

 

(b) Test data of Large break size LOCA 

 
FNN DFNN 

RMS 
Error (%) 

Max 
Error (%) 

RMS 
Error (%) 

Max 
Error (%) 

Hot-leg 0.74 5.34 0.01 0.05 
Cold-leg 0.62 2.94 0.04 0.25 

SGT 1.40 5.55 0.19 1.31 
 

4. Conclusions 
 

When LOCA occurs in the NPPs, the aspect of 
variables varies greatly depending on its size. If a severe 
accident occurs due to LOCA, the case proceeds rapidly, 
and the operator’s action time will be reduced in urgent 
circumstances. As the accident progresses, human error 
and instrument’s uncertainty also increase. In this study, 
the leak flow prediction was performed applying 
simulated data by MAAP code to a DFNN method. 
Prediction errors of leak flow using DFNN are low, 
especially in case of large hot-leg LOCA. In addition, as 
shown in Table II, the performance of DFNN composed 
of multiple hidden layers is superior to that of single 
FNN. Leak flow prediction results provided to operators 
will be a helpful signal as one of the factors for 
determining core integrity. 
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