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1. Introduction 

 
If a nuclear power plant accident occurs, it is difficult 

for people to approach the accident area. In case of 

Chernobyl accident (1986), everyone who had exposed 

to radiation on the site was eventually caused to death [1]. 

A radiation sensor network system is the most 

effective way to monitor an accident situation at nuclear 
power plants. It can be collected the necessary nuclear 

radiation data right after the accident, even in places 

where people cannot enter. However, the sensors could 

be exposed to radiation above a certain level during the 

measurement process, causing inoperable and missing a 

part of data.  

Therefore, we have a plan to use deep learning 

algorithms to compensate for the missing data. While 

traditional machine learning algorithms are used to 

discriminate selected features based on standardized data, 

a recently developed deep learning algorithms can show 
better classification ability by learning various features 

of data input from multiple layers [2]. 

This paper is organized into four sections. Section 2.1 

describes the data preprocessing process, Section 2.2 

explains the model used for data compensation, Section 

3 shows the training and test results, and Section 4 

summaries the direction of future research. 

 

2. Methods 

 

2.1 Data preprocessing 

 Before collecting the actual data, we created simulation 
data to train and test a deep learning model.  

Fig. 1 shows an architecture of a virtual nuclear plant 

site consisting of grassy area absorbing radiation easily 

and buildings preventing radiation spread.  

Fig. 2 illustrates a spread of radiation from the start 

point marked by red for 300 second simulation based on 

site map of Fig. 1. In order to obtain data set, we 

simulated four models with different starting points; one 

is for test data set and the others were used for train data. 

The one of three train data was displayed in Fig. 2 by a 

python library on the 160 by 160 pixel size. 
In Fig. 3, there are two black boxes indicating the pixel 

death converting the pixel values to 0 that is an 

assumption of malfunctioning and/or missing sensors. 

 
Fig. 1. Virtual Nuclear Power Plant 

 
Fig. 2. Radioactivity map at 300 s 

 
Fig. 3. Radioactivity map where some pixels are dead indicat

ing sensor missing data 
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Fig. 4. A conventional U-net architecture      

 

Fig. 2 data was used as label data and Fig. 3 data was 

used as input data, respectively. 

The next section will discuss the deep learning model 

we used. 

 

2.2 U-net Model  

Convolutional neural networks (CNN) is suitable 

artificial neural network for image classification. For 

example, in the imagenet large scale visual recognition 

challenge (ILSVRC) [3], Alex-Net (1st, ILSVRC 2012), 
VGG-Net (2st, ILSVRC 2014), Google-Net (1st, 

ILSVRC 2014), and Res-net (1st, ILSVRC 2015) based 

on CNN received high ranked awards with better results 

than other models not kind of CNN [4]. 

So we used a U-net model based on CNN. U-net has 

some advantages over other CNN models. U-net can be 

computed faster than other models because dose not 

overlap in convolution layer and is not easy to trade off 

(bias-variance trade off) because it has a special layer 

represented by gray arrows in Fig. 4. The special layer is 

concatenated the one layer on the contracting path with 
the other layer on the expansive path. This process makes 

it possible to recover the data lost in the up-convolution 

process [5].  

The U-net model used in this work consists of a 3x3 

size convolution layer, activation function using leaky-

relu, concatenated layer (concat layer), 2x2 max-pooling, 

and 2x2 size up-convolution. 

The convolution layer is for creating feature maps by 

identifying the feature of each section after filters stride 

image data [6]. 

The activation function is that determines whether the 

extracted feature value is valid. Among the various 

functions, Leaky-relu is following the formula below. 

 

F(x) = max(𝑎 ∗ 𝑥, 𝑥),  𝑤ℎ𝑒𝑛 ≫ 𝑎  

 

Max pooling layer is to perform calculations for the 

overlap between image and filter after convolution, using 
only the largest value in filtering data each filter. Then 

the image data is highlighted. 

Up-convolution is similar to up-sampling not only 

increasing the size, but also retaining the feature. So, it 

does not lose feature values during convolution. 

 

3. Result 

 

Fig. 5 shows (a) compensated image for missing data 

by U-net, (b) image with dead pixels, and (c) ground truth 

(GT). The results of the compensation simulation for the 
loss of radioactive map data through deep learning could 

support the proposed method working properly. 

In Table I, the error rate was calculated by comparing 

the U-net image pixel data with the GT image pixel data 

in the damaged coordinate.  

Unfortunately, Fig. 5 (a) image is not clear due to the 

construction of the resolution of the input data and the 

learning model. In the case of the input data, a low 

resolution images were extracted in the data 

preprocessing. On the other hand, the learning model, a 

blurry image was taken out of learning based on the entire 

image data, not a necessary part of the image. 
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Fig. 5. Simulation data comparison: (a):  Radioactivity map image restored by U-net. (b): Radioactivity map image with random 
dead pixels. 

 
TABLE I:  Compare the error rate for each coordinate 

 
 

 
 

 4. Conclusions 

 

This paper presents a method for compensating missed 

sensor data from a radiation sensor network by using a 

deep learning algorithm. With this method, the missed 

data can be compensated for the data of the entire sensor 
network. The compensation accuracy for the three 

sample points as missed data was over 75%. 

However, since radiation data is extremely sensitive to 

safety issues, the accuracy should be much higher as well 

as the problem on the low resolution image should be 

resolved. 

For the conference presentation, we will show better 

performances by revising and analyzing the deep 

learning model. 
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(X, Y) U-net GT 

Average  

error rate 

(%) 

(109, 37) (0.11, 0.907,0.845) (0.184, 0.925, 0.769) 

 

 

82.94 

(114, 33) (0.0462, 0.662, 0.938) (0.0863, 0.616, 0.976) 

 

 

80.89 

(121, 50) (0.119, 0.75, 0.931) (0.255, 0.89, 0.902) 

 

 

75.94 


