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1. Introduction 
 

A Probabilistic Safety Assessment (PSA) has been 
used to estimate the risk of Nuclear Power Plants 
(NPPs). For more accurate analysis, the PSA analysis 
should be performed, as realistic as possible. The 
problem is that, however, the number of accident 
scenarios will drastically increase for a complicated 
system that comprises of many systems or components, 
such as NPPs. The Fig. 1 shows the effect on 
uncertainty source of PSA results. To obtain equivalent 
results as the bottom of Fig 1, it is inevitable to run a 
tremendous number of a thermal-hydraulic (TH) code 
that specifies the consequences of each accident 
scenario. To handle this problem, as previous study, a 
framework for the dynamic extension and fast 
progression analysis of accident scenario was suggested 
[1]. In this paper, a deep learning based generative 
model for replacing a specific TH code is explained, 
which plays a critical role for implementing the fast 
progression analysis of accident scenario. 

 

 
Figure 1. Uncertainty source of PSA results [2] 

 

The deep learning techniques have become very 
popular because of novel algorithms due to the increase 
of computing power [3]. Thus, it is evident that the use 
of diverse deep learning techniques is an irreversible 
trend in many industries [4-10]. One of the key benefits 
expecting from these deep learning techniques is that it 
is possible to create an emulation system that can 
synchronize the repose (or behavior) of a target system. 

 
2. Deep learning model for synchronizing TH results 

 
To develop fast progression system, the generative 

model is considered because it will be able to generate 
an accident scenario by using specific condition. The 
generative model is one of the applications of deep 
learning, recently, it shows remarkable performance in 
deep learning such as auto-encoder, Variational auto-
encoder (VAE), Convolutional Neural Network (RNN), 
and Generative Adversarial Network (GAN). There are 
many deep learning models have been studied for image 
generation or image inpainting, however, the generating 
time series data (especially accident scenario data) 
relatively less researched. 

The structure of the developed deep learning model is 
conditional auto-encoder (CAE) as illustrated in Fig. 2. 
The CAE is kind of auto-encoder which consists of 
encoder and decoder. The encoder compresses the data 
to reduce dimension (latent space in Fig. 2), and the 
decoder generates the original data. Thus, if we have an 
appropriate generative model, the original data can be 
obtained by only using latent space and decoder. With 
this characteristic of auto-encoder, the CAE can be 
calculated the original data what we want to train 
decoder with conditional input. 
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Figure 2. The schematic diagram of the developed deep 

learning model 
 
As illustrated Fig. 2, developed model has TH code 

output (primary side pressure, primary side temperature, 
reactor power, etc.) as model input. The latent space is 



Transactions of the Korean Nuclear Society Autumn Meeting  
Goyang, Korea, October 24-25, 2019 

 

 
generated through encoder, then, the decoder generates 
TH code output. However, in case of just only using 
latent space, the TH code output does not include what 
we want to know. Thus, conditional input which is TH 
code input in case of our developed model is added to 
latent space, then, adequate result is generated from 
using latent space and conditional input. 
 

3. Results 
 
In order to validate deep learning model, the rapid 

cooldown operation in a small loss-of-coolant accident 
(SLOCA) in the APR-1400 NPPs was applied. TH 
analyses for the RCS rapid cooldown operation in 
SLOCA of the APR-1400 were performed with MARS 
(Multi-Dimensional Analysis of Reactor Safety)-KS 
code. Monte Carlo sampling and multiple TH 
simulations were performed utilizing MOSAIQUE code. 
The break sizes of SLOCA are 0.5, 1.0, 1.5 and 2.0 inch. 
Table 1 summarized variable distribution results as 
conditional input (TH code input in Fig. 2). 

 
Table I: Variable distribution summary 

Variable Distribution 
MSADV initial open 

time (seconds) 
Lognormal 

Ln(X)~N(41, 0.38542) 

RCS cooling fate (K/h) Weibull (10.2, 0.019531) 

Duration of available 
safety injection (seconds) 

Fail-to-start (98%): 0.0s 
Fail-to-run(2%): p(t) 

p(t) = 1.61E-9*Exp(-1.61E-9*t) 

RCS trip time (seconds) 
Lognormal Ln(x)~N(13, 

0.38542) 
 
The length of simulation data is different depending 

on break size of SLOCA. However, the input length of 
developed model is same at all cases, hence, simulation 
length was equally truncated. The input data was 
normalized by min-max-scaler and split by train, 
validation, and test. The sizes of each samples are 6404, 
160, and 1441. Total data size is 8005. The CAE has 
the encoder and the decoder. The encoder and the 
decoder have symmetrical structure. In this paper, the 
encoder structure has 3 layers that consist of different 
number of nodes (10, 95, 190, and 380). The more 
detailed explanation of suggested model is summarized 
in Table 2. The Xavier initialization method was 
applied. After the completion of data generation, 
moving average was performed with 20 windows. 

  
Table II. summary of deep learning model 

Parameter Value 
Activation function Relu 
Optimizer (epsilon) Adam (0.1) 

Learning rate 0.00005 
Cost function Mean Squared Error 

Epoch 50,000 
Batch size 10 

 

The Fig. 3 and 4 show the results of developed model. 
The blue line indicates true values from MARS, and, the 
orange line indicates prediction. The average accuracy 
is 0.45% and standard deviation is 0.51%. 

 

 
Figure 3. The results of 0.5 inch LOCA 

 

 
Figure 4. The results of 1.0 inch LOCA 

 
4. Conclusion 

 
In this paper, a deep learning based generative model 

for replacing a specific TH code was developed. The 
developed model follows trend of accident scenarios 
with high accuracy. In addition, the calculation speed is 
0.01 seconds for one simulation. Using this technique, 
the PSA model can seek more realistic results and less 
uncertainty results because of considering more 
sequences. 

For the further study, fixed length problem will be 
solved. The fixed length problem means the auto-
encoder has always same length for all cases, however, 
the accident scenarios have not same time sequences. 
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