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1. Introduction 

 

Diagnosis tasks in Nuclear Power Plants (NPPs) are 

known as one of difficult tasks to operators. Monitoring 

and diagnosis of the state of NPPs are typically 

performed by operators who consider process variables 

based on operating procedures [1]. Most of the NPPs 

have a lot of alarms about systems and components. 

When an alarm occurs, the operator should diagnose the 

state and perform recovery actions in accordance with 

the operating procedure.  

However, when complex situations occur, it is difficult 

for operators to make a diagnosis with rapidly changing 

parameters in a limited time. Therefore, how to help the 

operator diagnose and identify abnormal operating 

procedures accurately is an important issue [2]. 

In order to help operators to make decisions in an 

abnormal situation, several algorithm have been 

suggested based on artificial intelligence (AI) techniques 

such as expert system, Fuzzy logic, Hidden Markov 

Model (HMM), Artificial Neural Networks (ANNs) 

[1,4,5]. ANNs are considered one of the most relevant 

means since they can handle pattern recognition as well 

as nonlinear problems. 

This study suggests a diagnosis algorithm for 

abnormal situations. An algorithm based on the Long 

Short-Term Memory (LSTM) network was developed. 

Then, this study gathered the data for training and testing 

from a Compact Nuclear Simulators (CNS) that are 

based on a Westinghouse three-loop, 930-MWe 

pressurized water reactor. Finally, the algorithm has been 

trained and tested.  

 

2. Method 

 

2.1. LSTM 

 

We propose LSTM for sequence learning to deal with 

the recurrent neural networks (RNNs) for the vanishing 

gradient problem. LSTM is a neural network architecture 

based on the RNN for processing long temporal 

sequences of data. 

Each LSTM cell uses the input gate, forgetting gate, 

and output gate to adjust its output while maintaining the 

cell state. The information in the cell state does not 

change, and information can be added or deleted through 

each gate. In addition, the operation of each gate consists 

of an addition operation added to the cell state, thus it can 

avoid the vanish gradient problem. 

The input gate determines the capacity of the input 

value. The forgetting gate determines how much of the 

previous cell state is forgotten, and the output gate 

determines how much to output. Equation (1), indicated 

by g, represents the input node and has a tanh activation 

function denoted by ø; Equations (2) to (4) represent the 

gate indicated by i,f, and o, respectively; σ represents a 

relu function.                        

 

𝑔𝑙
(𝑡)

= ø(𝑊𝑔 ∙ [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑙
𝑔

)                 (1)     
 

𝑖𝑙
(𝑡)

= 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑙
𝑖)                  (2) 

 

𝑓𝑙
(𝑡)

= 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑙
𝑓

)                 (3) 
 

𝑜𝑙
(𝑡)

= 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑙
𝑜)                 (4) 

 
2.2. Softmax 

 

Softmax function is used for the post-processing of 

LSTM output. The softmax function is an activation 

function commonly used in the output layer of the deep 

learning model; it aims to classify more than three classes. 

The softmax is a function that exponentially increases the 

importance through an exponential function; it also 

increases the deviation between the values and then 

normalizes. It normalizes the input value to the output 

value between zero and one via the following Equation 

(5), and the sum of the output values is always one.  

 

  S(yi) = eyi/ ∑ ek(for i = 1, … . , KK
k=1 )              (5) 

 

3. Diagnosis algorithm of abnormal situations 

 

This study suggests a diagnosis algorithm for 

abnormal situations based on the LSTM network and 

Softmax function. Fig. 1 shows an architecture of the 

algorithm. This algorithm uses the multilabel 

classification model of LSTM in the core. In addition, 

pre- and post-processing methods of data are also 

suggested.    

 

3.1. Pre-processing of input data 

 

The number of input data for training is 164. Each 

input does not have the same unit and scale (e.g., a 

normal state of Pressurizer pressure: 158kg/cm2, alarm 

state: on or off). Variables with higher values will 

essentially have more impact on the results. However, 

this does not necessarily mean that this is more important 

as a predictor. This problem detects local minima. The 
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min-max normalization can help prevent local minima. It 

performs a linear transformation on the raw data, and to 

use Equation (6). The min-max scaling data ranges from 

0 to 1. 

 

𝑋𝑛𝑜𝑟𝑚 = (𝑋 − 𝑋min)/(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)               (6) 

 

3.2 LSTM network model 

 

As shown in Fig. 1, a model for accident diagnosis is 

designed for multilabel classification because diagnoses 

may not be mutually exclusive. To predict an accident, 

the trend of such a sequence of variables is needed as 

inputs. Thus, a many-to-one structure is applied to design 

the model. According to the specific number of NPP 

input data sequences, the model can diagnose the plant 

state by recognizing the pattern (i.e., the NPP trend). 

 

3.3. Post-processing of output data 

 

As a post-processing for the output of the network, the 

softmax function is used to determine the ranking of 

abnormal situation probability. The softmax function 

assigns a probability to the result of LSTM network.  
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Fig. 1. Overview of the process of abnormal situation 

diagnosis. 

 

4. Experiment 

 

The data for the training and test were collected for 

three types of abnormal situations: instrumentation and 

control (I&C) failure (1-6 scenarios, as shown in Table 

I), equipment failure (7-16 scenarios, as shown in Table 

I), and leakage (16-20 scenarios, as shown in Table I).  

The total of 20 abnormal situations and 568 scenarios 

(453 for training and 115 for testing) are collected from 

the CNS.   

 

Table I: Scenarios  

No. Scenarios of measuring 

instrument error 

Number of 

Scenarios 

1 Failure of Pressurizer pressure 

channel (High) 

18 

2 Failure of Pressurizer pressure 

channel (Low) 

27 

3 Failure of Pressurizer water level 

channel (High) 

6 

4 Failure of pressurizer water level 

channel (Low) 

15 

5 Failure of steam generator water 

level channel (Low) 

40 

6 Failure of steam generator water 

level channel (High) 

42 

7 Control rod drop 48 

8 Continuous insertion of control rod 8 

9 Continuous withdrawal of control 

rod 

8 

10 Opening of pressurizer PORV 52 

11 Failure of pressurizer safety valve 51 

12 Open of pressurizer spray valve 50 

13 Stopping of charging pump 1 

14 Stopping of 2 main feedwater pumps 3 

15 Main steam line isolation 3 

16 Rupture at the inlet of the 

regenerative heat exchanger 

50 

17 Leakage from chemical volume and 

control system (CVCS) to 

Component Coolant Water (CCW) 

50 

18 Leakage at the outlet of charging 

control flow valve 

30 

19 Leakage into the CCW system from 

Reactor Coolant System (RCS) 

30 

20 Leakage from steam generator tube 36 

 Total 568 

 

4.1. Training 

 

We conducted the training using a total of 20 abnormal 

situations of 453 scenarios with 203,964 data sets 

including 164 CNS parameter values in each time step. 

After 15 epoch of training, loss values of training data 

and test data are 0.0026 and 0.0076, respectively, as 

shown in Fig.2. The accuracies defined by an equation (7) 

of training data and test data are 0.9992 and 0.9986. Fig. 

3 shows the trend of accuracy with the epoch.  

In this training, a desktop computer with the following 

hardware configurations is used: NVIDIA GeForce GTX 

1080 8GB GPU, Intel 4.00 GHz CPU, Samsung 850 

PRO 512 GB MZ-7KE512B SSD, and 24 GB memory. 

Python 3.7.3 is used for coding languages. The Python 

libraries developed to model the algorithm for machine 

and deep learning (e.g., Keras and Pandas) were used. 

 

Accuracy =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎

𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎
                (7) 
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4.2. Validation  

 

After 15 epoch of training, the accuracy of prediction 

for 115 scenarios becomes 0.9986, as shown in Fig. 3. 

Figs. 4 and 5 shows the results of the suggested algorithm 

for the leakage into CCW system from RCS and the 

opening of pressurizer PORV, respectively. The results 

indicate that the suggested algorithm can diagnose the 

abnormal situations fast and accurately. 

 

 
Fig. 2. Value of train and test data loss 

 

 
Fig. 3. Accuracy of prediction train data and test data 

 
Fig. 4. The result for the leakage into CCW system from RCS 

 

 
Fig. 5. The result for the opening of pressurizer PORV 

 

5. Conclusion 

 

This study proposed an algorithm to diagnose 

abnormal situations by using AI techniques. An 

algorithm using the LSTM and softmax has been 

suggested and trained with the data collected from the 

CNS. The results also indicated that the algorithm could 

diagnose abnormal situations fast and accurately.  
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