Synthesis of Fluorescent Fluorinated Graphene Quantum Dots by Plasma Treatment

NQE Nuclear & Quantum Engineering

<u>Na Eun Lee</u>, Sangyoon Lee, Hyungsan Lim, Heon Yong Jeong and Sung Oh Cho* Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Yuseong, Daejeon 34141, Republic of Korea Author e-mail: pancy6@kaist.ac.kr

Introduction

Graphene quantum dots (GQDs)

- > Few layers to tens of layers of graphene with a size less than 30nm
- > Photoluminescence (PL) by quantum confinement effect & surface passivation

Phys. Chem. Chem. Phys. 19. (2017) 30445--30463

Illustration of GODs

Fluorinated GQDs

Angewandte Chem. Inter. 49.26 (2010): 4430-4434 Fluorescent properties of GQDs

Increase oxidization => Red-shifted PL

Methods

1 Preparation of high-quality GQDs

② RIE process on high-quality GQDs

- Fabricated high-quality GQDs were placed in PE-RIE system (AllForSystem, Korea).
- \succ Internal pressure was kept to vacuum by rotary pump subsequently CF4 gas was injected to the device with flow rate of 10 sccm pressure was maintained to 150 mTorr.
- \succ Etching time : 10 min
- ➤ Radio frequency power : 20 W. .

- > Wide energy gap
- > Possession of high potential to use in electrical fields for semiconductor

Application of fluorescent GQDs

Quantum Ink

Bio Imaging

Conventional methods for fluorescent GQDs synthesis

Results & Discussion

SEM image of fluorinated GQDs on SiC

(at.%)	0 min	10 min (on SiC)	After deta chment
F	0	34.78	3.5
С	76.25	39.19	76.54
Ο	14.06	13.47	19.96
Si	9.69	12.56	-

Atomic ratio of GQDs and F-GQDs on SiC and F-GQDs after sonication process

SEM image of (a),(c) GQDs on SiC and F-GQDs on SiC etched by fluorine plasma for (b),(d)10 min (a,b: Magnification is 10k, b,d: Magnification is 20k).

Optical properties of F-GQDs

- Using harmful & various chemicals
- Impurities 2.
- **Difficult in achieving precursors**

Plasma Etching-Reactive Ion Etching (RE-RIE)

- 1. Simple process
- 2. No uses of chemicals & solvent
- 3. Directly synthesized on substrate
- ➤ F atomic ratio significantly increased to 34.78%, after etching process
- F atomic ratio of F-GQDs was decreased to 3.5% after sonication process
- \succ High absorbance of UV to 300 nm, resulting from π - π * transition of aromatic
 - C = C bonds and absorption band at 325 nm, attributed to $n-\pi^*$
- > The F-GQDs dispersed in water show the strong UV/blue light emission

Conclusion

- \succ CF₄ plasma etched the surface of GQDs and functional groups are attached to the surface of F-GQDs
- **F-GQDs** are separated from the SiC plates by sonication process
- **F-GQDs** are well dispersed in water
- > PL emission spectra of F-GQDs exhibit the strong blue emission

Acknowledgements

> This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2020M2D8A2069727).