Improvement of transient analysis of S-CO₂ cooled micro modular reactor using DNN based turbomachinery off-design model

Seongmin Son^a, Jeong Ik Lee^{a*}

^aDepartment of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST) 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea *Corresponding author: jeongiklee@kaist.ac.kr

1. Introduction

The supercritical CO_2 (S-CO₂) power cycle is one of the most promising power conversion systems for the nextgeneration nuclear plants [1]. S-CO₂ power cycles can achieve small footprint and high-efficiency with a simple configuration. Also, CO₂ is chemically non-reactive, so it can be used as reactor coolant. Due to these advantages, S-CO₂ power cycles are now considered in various nuclear reactors such as small modular reactors, sodium-cooled fast reactors, and high-temperature gascooled reactors.

Although safety analysis is one of the most important fields in nuclear engineering, the safety analysis of the S-CO₂ system did not have high accuracy. The main cause of low accuracy is CO₂ property fluctuations near the critical point. This problem makes the prediction of the off-design performance of compressors operating especially near the critical point uncertain, causing errors in the prediction of system's off-design performance.

In the previous study, Son et al., [2] showed that applying the Deep Neural Net (DNN) based turbomachinery offdesign model can improve the prediction accuracy of the quasi-steady state analysis of the S-CO₂ system. In this study, it is analyzed whether the analysis accuracy can be also improved when the model is applied to the transient analysis platform.

2. Methodology

2.1. KAIST-MMR

The study is selected an S-CO₂ direct-cycle nuclear reactor as a reference system, KAIST-MMR. KAIST-MMR is a 10MWe class micro modular reactor shown in Figure 1. KAIST-MMR is utilizing an S-CO₂ simple recuperated cycle. The cycle information of KAIST-MMR is summarized in Table 1.

Figure 1. Concept art of KAIST-MMR

Parameter	Value	
Maximum Temperature (Turbine Inlet)	823.15 K	
Maximum Pressure (Compressor Outlet)	20 MPa	
Turbine Efficiency	92 %	
Minimum Temperature (Compressor Inlet)	333.15 K	
Minimum Pressure (Compressor Inlet)	8 MPa	
Compressor Efficiency	85 %	
Turbomachinery RPM	19300	
Recuperator Effectiveness	92 %	
System mass flow rate	180 kg/s	
Reactor Power	36.4 MW _{th}	
Cycle Efficiency	34 %	

2.2. DNN based turbomachinery off-design model

Normally, similarity methods are used to analyze the offdesign performance of turbomachinery. However, for S-CO₂ systems, it has been pointed out that these methods can be source of errors [3-4]. According to Son et al., [2] this can be resolved by adopting the Deep Neural Network (DNN) based regression model of the 1D meanline method without extra calculation time. In this research, this DNN based S-CO₂ turbomachinery offdesign model is applied to the transient analysis platform. The structure of the utilized DNN is shown in Figure 2, and details of the turbine and compressor models are summarized in Table 2. Training is done using PyTorch v1.0 in Python 3.6 environment.

Figure 2. DNN based S-CO₂ turbomachinery off-design model for simulation

Table 2. DNN parameters for S-CO₂ turbomachinery off-design models

		Turbine	Compressor	Note
	Parameter	Value	Value	
Model Information	Input Size	4		T, P, m, rpm
	Output Size	2		Eff, PR/ΔH
	Number of hidden layers	2		
	Hidden size	20/20		
	Activation Function	Rectified Linear Unit (ReLU)		
	Structure	Feed Forward Network		
Training Information	Original Database	KAIST-Turbomachinery Design		
		(KAIST-TMD)		
	Number of Train Data	30000		
	Number of Validation Data	10000		
	Number of Test Data	10000		
	Batch Size	1000		
	Maximum Epoch	150		
Optimization	Optimizer	Adam		
Information	Loss Function	Mean Square Error		
Statics (Test Set)	Mean Absolute Percentage Error (%)	9.561 E-3	1.026 E-2	Ì
	Mean Square Error	1.956 E-4	3.156 E-4	
	R ² score	0.9909	0.9539	

2.3. Modified GAMMA+

The system analysis tool used in this study is the General Analyzer for Multi-component and Multi-dimensional transient Application (GAMMA⁺) code [5]. The GAMMA⁺ code is being developed by the Korea Atomic Energy Research Institute (KAERI) as the best-estimate system analysis code to simulate transient behaviors of a High-Temperature Gas-cooled Reactor (HTGR). The governing equations for single-phase flow dynamics in the GAMMA⁺ code are shown below.

 $\frac{Continuity equation}{\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial z}(\rho V)} = \sum_{s} R_{s,w}$ Energy conservation equation for sensible enthalpy $\frac{\partial}{\partial t}(\rho H) + \frac{\partial}{\partial z}(\rho H V) = \frac{\partial P}{\partial t} + V \frac{\partial P}{\partial z} + \frac{\partial q''}{\partial z} + \sum_{s} h_{s}R_{s} + q_{w}''$ Momentum conservation equation $\frac{\partial}{\partial t}(\rho V) + \frac{\partial}{\partial z}(\rho V V) = -\frac{\partial P}{\partial z} - \rho g - \rho \left(\frac{f'}{d} + K\right) V^{2}$

3. Results and Discussion

The analysis was performed for a load-following operation with a relative electric output change profile of 100%-50%-75% assumed. As it can be seen from the results, the modified GAMMA⁺ code can predict the S-CO₂ turbomachinery performance more accurately than any other previously used methods. It was confirmed that the modified GAMMA⁺ code can greatly improve the accuracy of turbomachine performance prediction compared to the transition analysis results using the existing similitude methods. Figure 4 shows the results of comparing Glassman correlation (GLA) and CEA correlation, which are widely used for turbomachinery off-design analysis, and DNN based off-design model. The results show the off-design performance predicted by KAIST-TMD at each convergence point of the transition analysis and the off-design performance predicted by the off-design model used in the transient code. The correction equations used in the existing gas turbine do not accurately predict the off-design performance of the S-CO₂ system, which distorts the transition analysis result. This part can be improved with the developed DNN based S-CO₂ turbomachinery off-design model. A more detailed explanation will be presented with additional data at the conference president.

Figure 4. Comparison between existing similitude methods and DNN based turbomachinery off-design model on the transient scenario for KAIST-MMR

ACKNOWLEDGEMENT

This research was supported by Civil-Military Technology Cooperation Program (ICMTC) funded by the Agency for Defense Development (17-CM-En-04).

REFERENCE

- Dostal, V., Driscoll, M. J., Hejzlar, P., & Todreas, N. E. (2002, April). A supercritical CO2 gas turbine power cycle for next-generation nuclear reactors. I n 10th International Conference on Nuclear Engine ering (pp. 567-574). American Society of Mechanic al Engineers Digital Collection.
- [2] Son, S., Jeong, Y., Cho, S. K., Lee, J. I. (2020) Dev elopment of supercritical CO2 turbomachinery offdesign model using 1D mean-line method and Deep Neural Network, *Applied Energy*, 263, 114645
- [3] Floyd, J., Alpy, N., Moisseytsev, A., Haubensack, D., Rodriguez, G., Sienicki, J., & Avakian, G. (201 3). A numerical investigation of the sCO2 recompre ssion cycle off-design behaviour, coupled to a sodiu m cooled fast reactor, for seasonal variation in the h eat sink temperature. Nuclear Engineering and Desi gn, 260, 78-92.
- [4] Moisseytsev, A., and J. J. Sienicki. Development of a plant dynamics computer code for analysis of a s upercritical carbon dioxide Brayton cycle energy co nverter coupled to a natural circulation lead-cooled fast reactor. No. ANL-06/27. Argonne National Lab oratory (ANL), Argonne, IL, 2007.

[5] Lim, H. S., & No, H. C. (2006). GAMMA multidim ensional multicomponent mixture analysis to predic t air ingress phenomena in an HTGR. *Nuclear scien ce and engineering*, 152(1), 87-97.