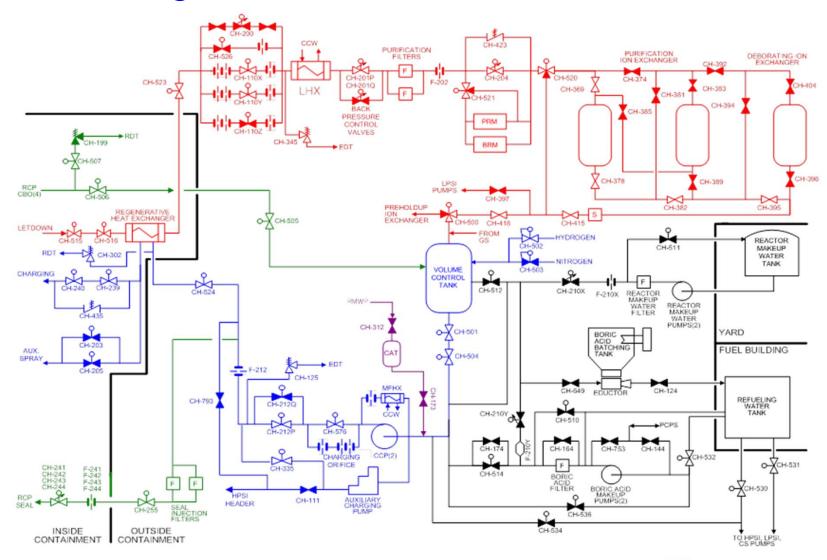
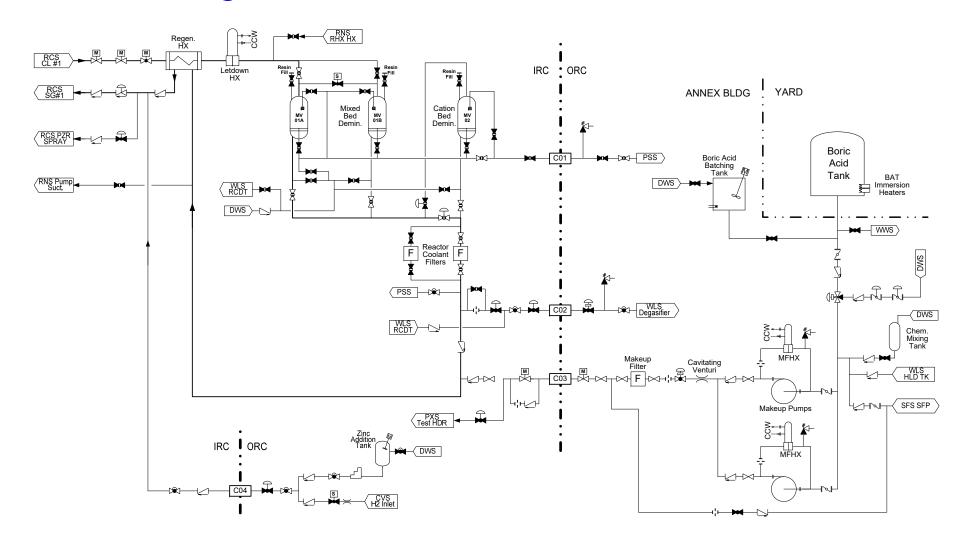
Innovative CVCS Design in SMR

2020.12.17.정 장 규원자로설계개발단 신기술사업그룹

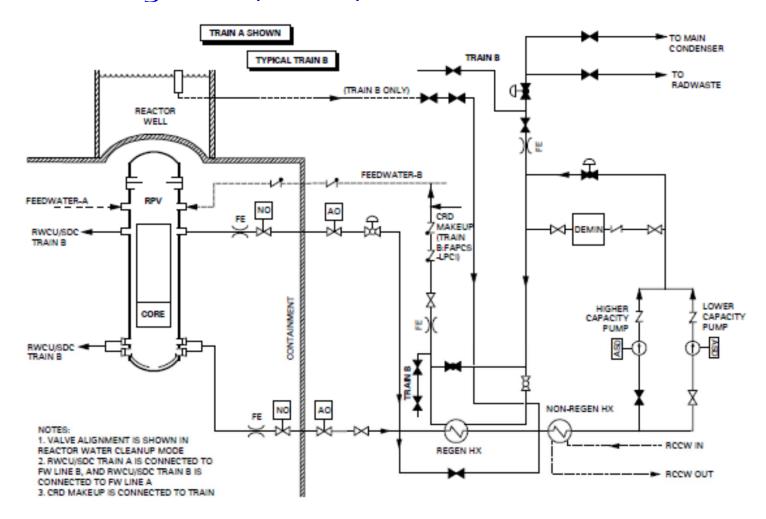


순서

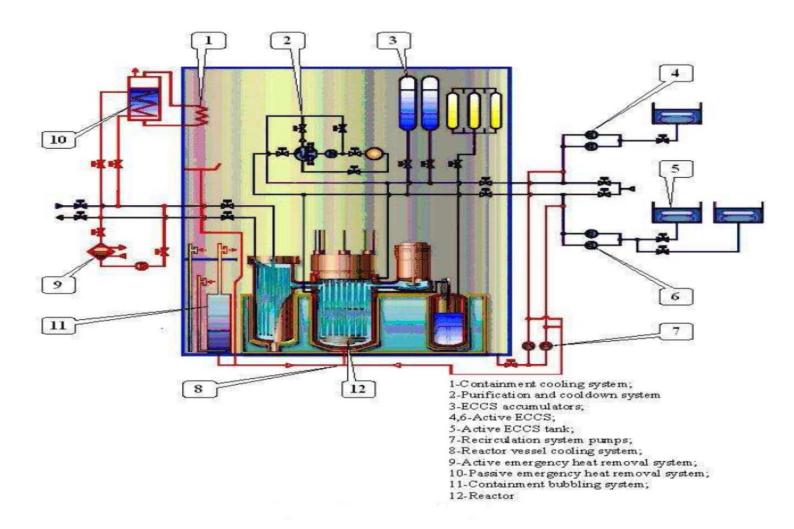
- 1 주요 원전 CVCS 개요
- 2 SMR용 혁신형 CVCS 개발방향
- 3 붕산 노심 과 무붕산 노심 CVCS 설계관점 비교
- 4 정부과제 수행 개요 및 정화 설비 개선안
- 5 SMR용 혁신형 CVCS 설계 안 및 비교
- 6 결론



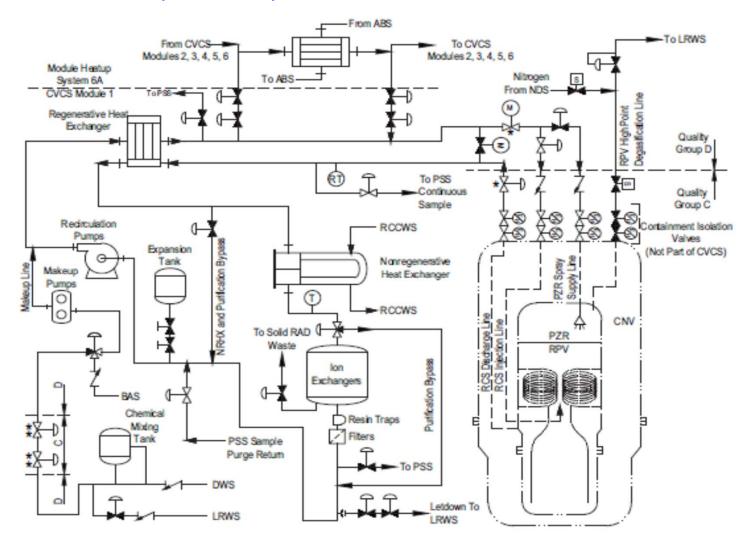
CVCS of Large PWR(APR1400)



CVCS of Large PWR(AP1000)


CVCS of Large BWR(ESBWR)

Reactor Water Cleanup/Shutdown Cooling System Schematic(RWCU/SDC)

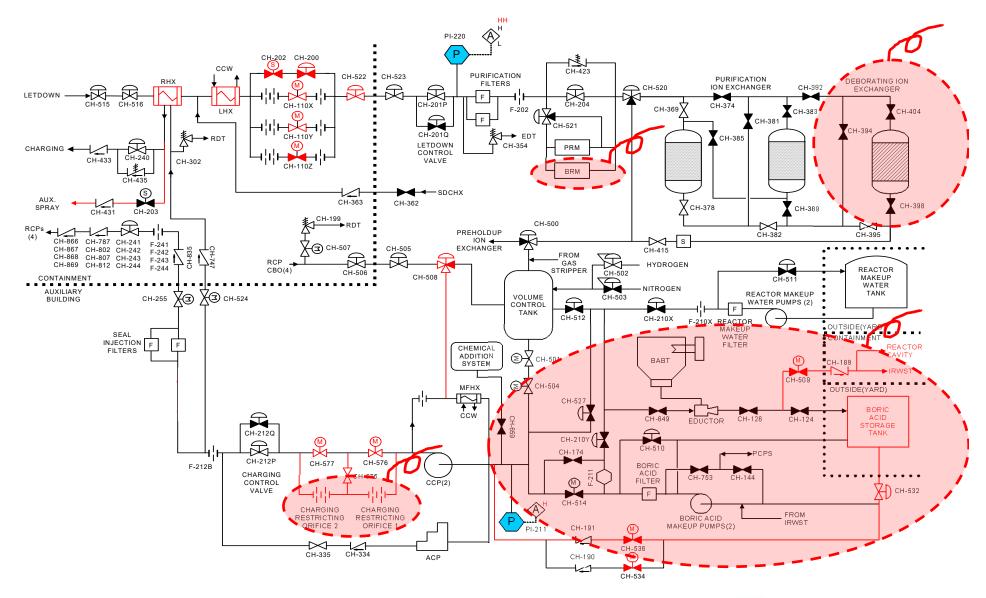


CVCS of SMR(KLT-40S)

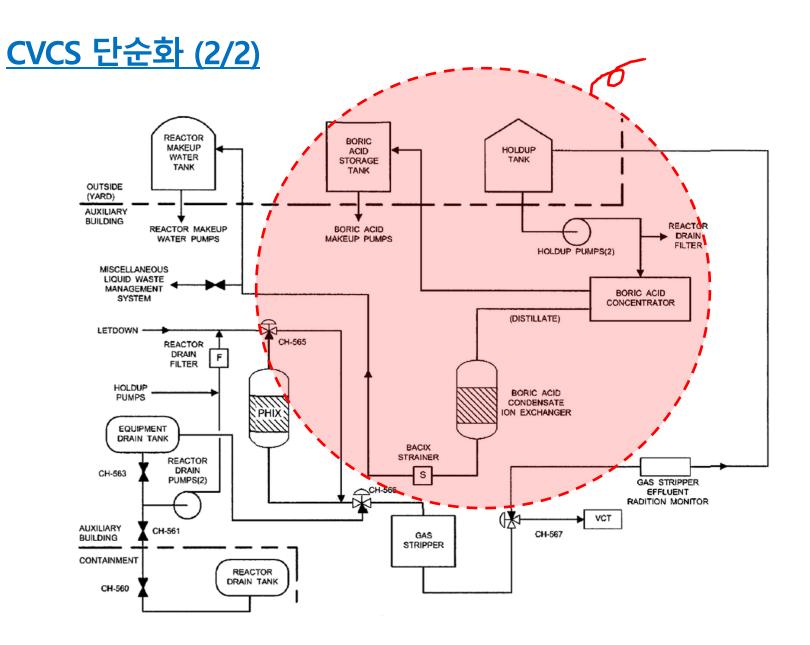
CVCS of SMR(NuScale)

2. SMR용 혁신형 CVCS 개발방향

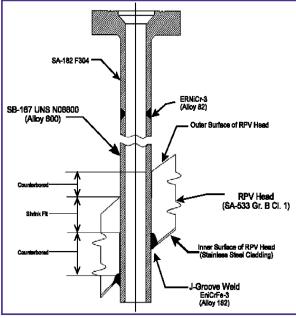
- ❖ 단순화(붕산관련 설비제거:무붕산기술적용)
- ❖ 소형화(모듈화, 판형열교환기 적용)
- ❖ 공용화(Makeup 설비, Surge 탱크 등)
- ❖ 최적화(혁신적 순수정화설비 적용)
- ❖ 운전 편의성(레진교환설비 제거)
- ❖ 폐기물량 최소화(레진제거 or 최소사용)



3. 붕산 노심 과 무붕산 노심 CVCS 설계관점 비교


설계특성	붕산 노심	무붕산 노심
특징	1. 붕산관련 설비 필요 - BAC, BAMP, BAST 등	1. 붕산관련 설비 불필요로 CVCS 단순화 가능
	2. 원자로 냉각재에 이온 및 부식생성물이 순수에 비해 많고 붕산 유발 PWSCC (David Besse 원전 압력용기헤드 부식)	2. 원자로 냉각재가 순수에 가깝고 Ph제 어를 위해 알칼리이온 미량첨가로 정화대상물질이 적고 <mark>붕산유발 PWSCC없음</mark>
	3. 붕산제거 이온교환기/리튬제거 이온교환기 필요	3. 붕산제거 이온교환기/리튬제거 이온교환기 불필 요 및 BWR가 같은 필터와 IX가 결합된 Compact한
	4. 붕산희석운전으로 액체/기체 폐기물 증대(레 진 처리설비 필요)	탈염기 사용가능 4. 붕산희석운전이 없어 액체/기체 폐기물 적음
	5.붕산희석사고 방지설비 필요(충전유량제한설 비)	5.붕산희석사고 배제로 방지설비 불필요
	6. NSSS 주요기기에 붕산요건 추가로 내부식성 설게 및 제작/자료 입증필요로 기기비용증대 7. 수용성 붕산을 사용한 입증된 2차 독립반응도 제어계통 사용가능	6. NSSS 주요기기 비용 감소 예상
		7. 2차 독립반응도제어기능 제거기계적 다른 2차 독립반응도제어계통 필요
		8. 원자로 냉각재가 순수에 가까워 혁신적 정화설비
	8. 원자로 냉각재에 이온, 부식생성물이 많아 혁신적 정화설비 사용 불가능	사용가능
		9.CIPS(AOA) 발생, 장주기, 출력증강, 부하추종에 붕산노심보다 유리
	9.CIPS(AOA) 발생증대, 장주기, 출력증강, 부하 추종에 방해	

CVCS 단순화 (1/2)



붕산유발부식사례(1/2)

- □ **Davis Besse** 발전소 원자로헤드 손상 ('02.3)
 - □ 원인: PWSC에 의한 관통부 균열 및 누설된 붕산수에 의한 부식으로 원자로 헤드 CEDM 노즐부위 손상
 - □ 폭 4~5 inch, 깊이 6 inch 크기의 손상으로 모재 관통

4. 정부과제(핵심요소기술개발) 개요

과제명	무봉산 운전 계통설계 기술 및 적합소재 기술개발 (Development of Boron Free Operational Reactor System Design and Material Selection Technology)
과제 목표	해외 원전 수출 및 신형로 개발 기술경쟁력 강화를 위한 무봉산운전 노심설계 및 원자로 계통설계 기술 확보
과제 수행기간	2013.06.01~2018.05.31(5년)
기술 성숙도(TRL)	3~4, 개념설계
기술개발방향 및 전략	 대형 및 중소형 가압경수로 차세대 노형개발에 활용될 핵심요소기술로서 혁신적인 무붕산운전 노심설계 기반기술을 확보 주요 핵심분야별 원자력 전문기관 및 중소기업이 분담하여 시너지효과 있는 기술개발 국내 원전설계 및 기술개발경험과 축적된 기술을 최대한 활용 부족 기술에 대해서는 국내외 기술협력을 통한 기술 확보

4. 정부과제(핵심요소기술개발) 개요

기술개발 범위 및 내용

무붕산 운전 계통설계 기술 및 적합소재 기술개발

구성

요소

기술

원자로 계통설계 기반기술

- ·무붕산 노심설계 코드체계구축
- •무붕산 수화학 관리지침 개발

•무붕산 노심설계

•무붕산 노심 안전/성능 평가

노심 제어 및 관리 기술개발

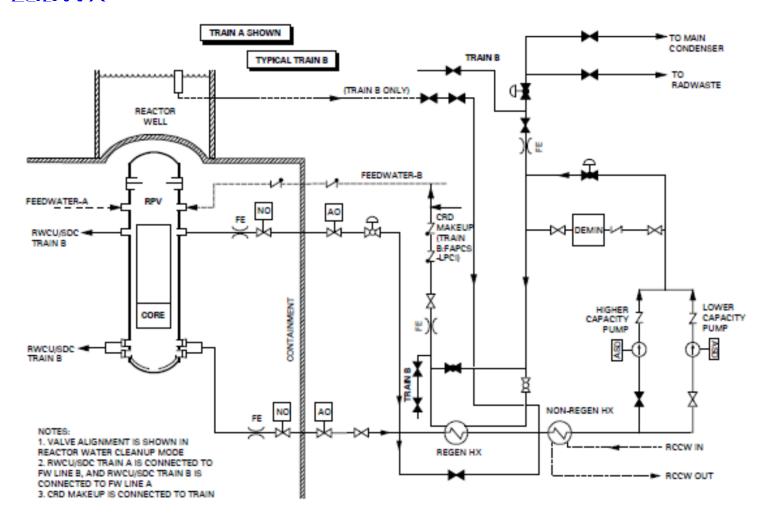
- •무붕산 노심 잉여 반응도 및 출력분포 제어/관리
- •독립적 다중 원자로정지계통 구축
- •무붕산 노심보호감시 관련 노내외 계측기 개발
- •부하추종운전 제어

장주기/장수명 재료 적합성 평가 기술개발

- •장주기 운전용 제어봉/가연성 중성자 흡수체 재료선정 기술
- •장수명 주요기기 재료 적합성 평가 기술

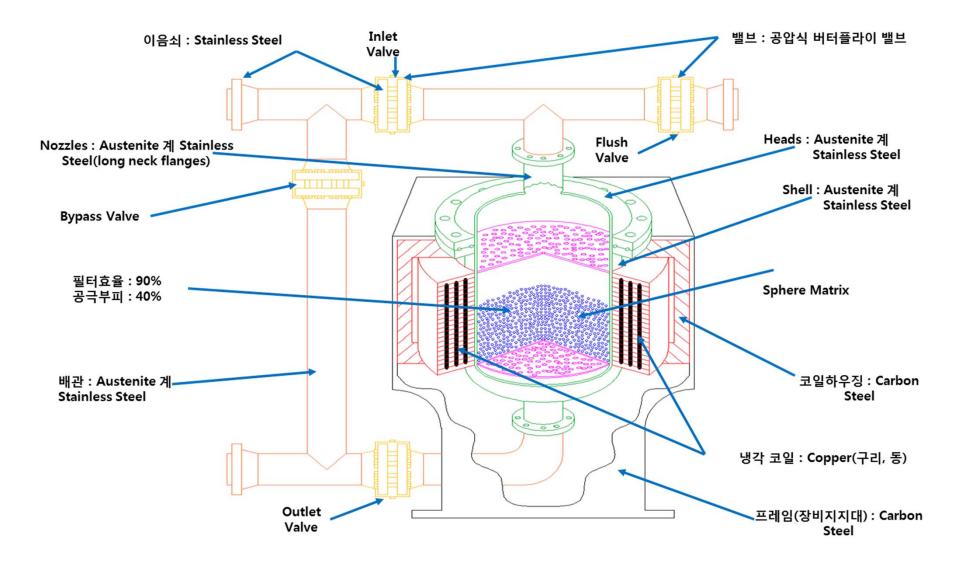
4-1. 정화설비 개선안: BWR 필터/레진 카트리지

PWR
Deep Bed Vessel
(Bead)



BWR
Precoat Filter/Demin
(Powdered)

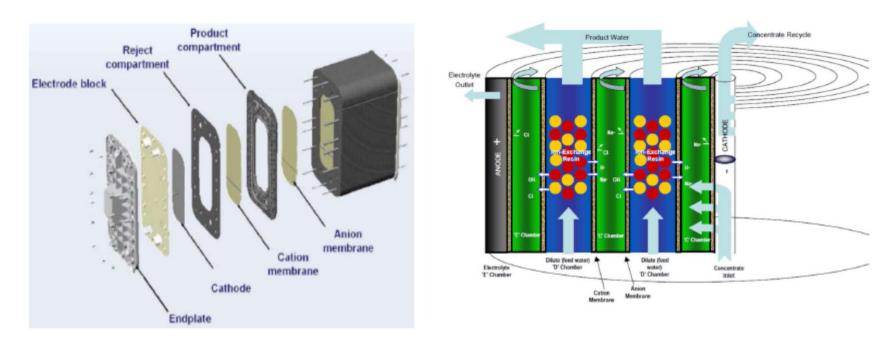
4-1. 정화설비 개선안: BWR 필터/레진 카트리지 적용사례


FSBWR

Reactor Water Cleanup/Shutdown Cooling System Schematic(RWCU/SDC)

4-1. 정화설비 개선안: EMF(Electro Magnetic Filter)-Ball Type

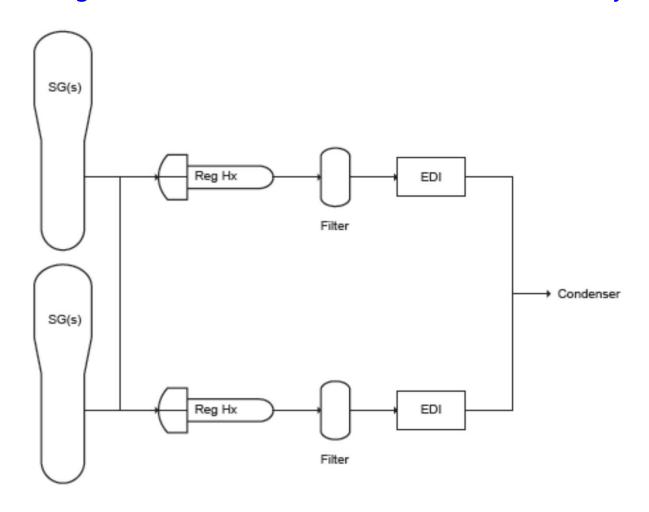
4-1. 정화설비 개선안: EMF 적용사례


독일 NPP

Power Plants	Reactors	Locations	Remarks
Stade	PWR	S/G blowdown	Application
(West Germany)	(630 MWe)		
Neckarwesteim	PWR	S/G blowdown	Application
(West Germany)	(1,269 MWe)		
Biblis	PWR	S/G blowdown	Application
(West Germany)	(1,240 MWe)	Feedwater	
ISAR-1	BWR	Feedwater	Reviewing
(West Germany)	(900 MWe)		(Ball type EMF)
Tullnerfeld	BWR	Feedwater	Reviewing
(West Germany)			
Gundremmingen	BWR	Condensate	Reviewing
(West Germany)	(1,284 MWe)	Prefilter	

4-1. 정화설비 개선안: EDI(Electro De-Ionization) Technology

Two types of EDI modules are used in industry applications: plate and frame units and spiral wound units.

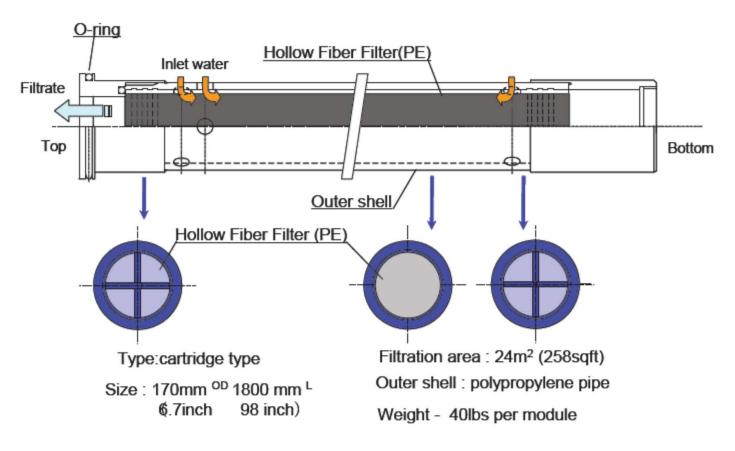


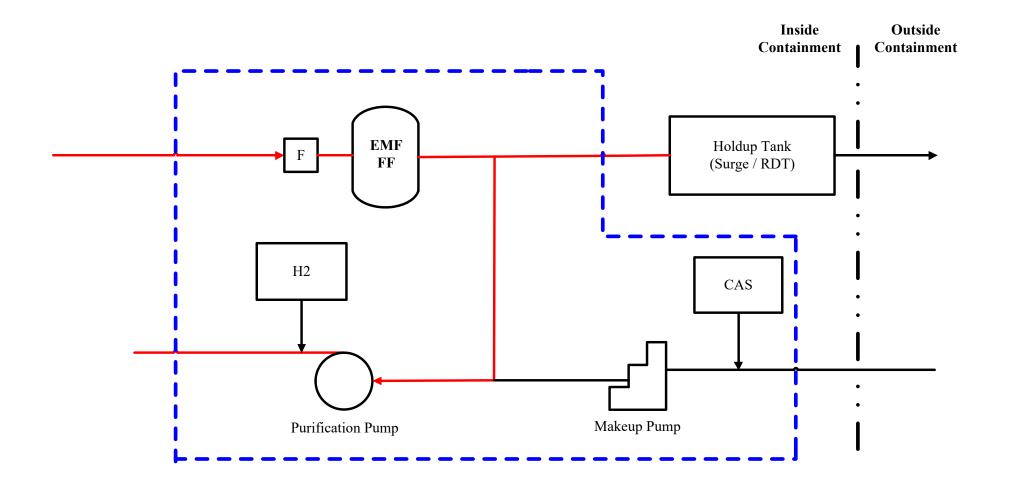
EDI is also used in other industries (e.g., for ultrapure water production).

4-1. 정화설비 개선안: EDI 적용사례

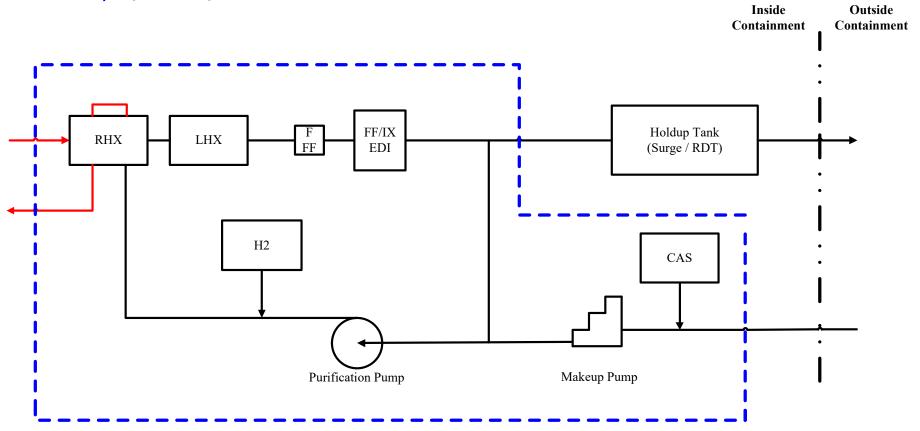
AP1000, Ringhals Unit 2(Sweden) SG Blowdown Purification System

4-1. 정화설비 개선안: Hollow Fiber Filtration(HFF)

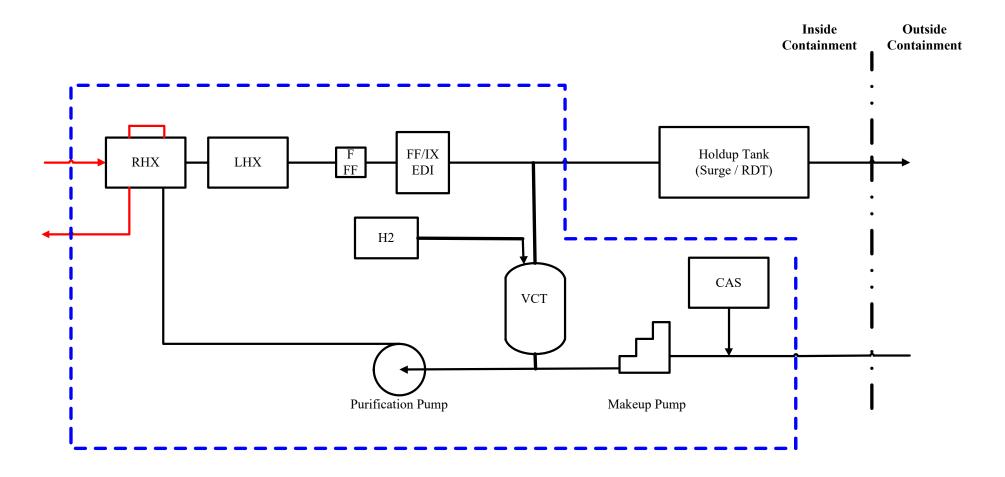



Figure 2-1 Typical Hollow Fiber Filter Design

설계특성	고온/고압정화	저온/고압정화	저온/저압정화
장 점	1. 가장 단순 - 감온(RGHX/LDHX)설비 및 감압설비(다단오리피스) 불필요 2. 모듈로 공장제작/현장설치성(상) 3. 단단충전펌프 사용가능으로 비용절감	1. 비교적 단순 - 감압설비(다단오리피스) 불필요 2. 모듈로 공장제작/현장설치성(중) 3. 단단충전펌프 사용가능으로 비용절감 4. 레진을 안쓰는 입증된 상용로 SGBD계통 및 순수계통 정화설비사용가능 5. 감온설비추가 비용이 고온정화설비보다 저렴 6. 충전노즐 열피로 문제해결	1. 대형상용로에서 입증된 설계 2. 레진을 안쓰는 입증된 상용로 SGBD계통 및 순수계통 정화설비 사용가능 3. IX 및 필터 등이 CV밖에 설치되어 정비가 쉬움 4. 배관 및 기기의 저압/저온 설계로 비용절감(감압비용저렴),정화설비외 공용화유리 5. 충전노즐 열피로 문제해결 6. VCT 설치로 펌프 NPSH 확보및 가스관리 쉬움 7. 단단Makeup펌프사용가능
단 점	1. 고온/고압정화설비개발 필요 - EMF 및 관련 세정설비 - 고온 이온성불순물 제거설비 2. 배관 및 기기의 고압/고온 설계로 비용증대 3. 충전노즐 열피로 문제 4. VCT제거 시 C-14증가 등 가스관리 어려움 5. CV안에 설치되어 기기보수 및 폐기물처리 어려움 6. 고압Makeup 펌프 필요	1. 감온(RGHX/LDHX)설비 추가필요: 판형열교환기 채택으로 비용최소화 및 공간축소 2. 배관 및 기기의 고압/고온 설계로 비용증대 3. VCT제거 시 C-14증가 등 가스관리 어려움 : VCT 추가 고려 4. CV안에 설치되어 기기보수 및 폐기물처리 어려움 5. 고압Makeup 펌프 필요	1. 가장 복잡 - 감온/감압설비 필요 2. 이온교환기 및 레진사용으로 페기물량 증대: 무붕산이기때문에 상기 장점 2항 적용가능 3. 모듈로 공장제작/현장설치 어려움 4. 고압충전펌프 사용으로 비용증대
적용노형	KLT-40S	AP1000/NuScale	OPR1000/APR1400



고압/고온정화



고압/저온정화-1

고압/저온정화-2

저압/저온정화

6. 결론

- 1. 무붕산 기술적용 CVCS 단순화(붕산관련설비 제거 등)
- 2. 정화계통은 이온교환기 레진을 대체하여 단순화/소형화/폐기물 을 저감하는 혁신개념 적용추진(미세필터, EDI, 나노레진, ESBWR의 필 터/이온교환기/스트레이너 일체형 등에 대한 적용성 검토 및 최적 정화설비 개발 및 성능입증
- 3. 재생열교환기 및 유출열교환기는 판형 열교환기 적용 크기 축소
- 4. 모듈 제작 기술개발 및 최적위치선정
 - 공장제작/현장설치/고압배관 최소화
 - 필터/정화기기 원격교체시스템(자동화/로봇시스템) 개발
- 5. 체적제어탱크(VCT) 제거 시 영향평가 및 가능성 검토, 고압VCT설 계 가능성검토
- 6. 시료채취계통 자동화 도입
- 7. 최적 탈기 방안 수립 및 개발(진공탈기, 증발식 탈기, Deaerator 등)
- 8. NuScale CVCS 대비 경제적 /기술적 경쟁력 확보

