Application of V-model on Safety and Security for Developing Digital I&C Systems

Jiye Jeong ^{a,b}, Gyunyoung Heo ^{b*}

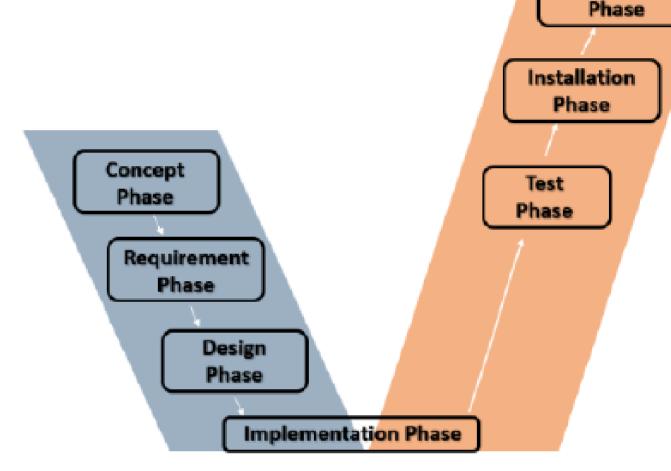
^a Doosan Heavy Industries & Construction Co., Nuclear I&C Dept. ^bDepartment of Nuclear Engineering, Kyung Hee University *gheo@khu.ac.kr

Introduction

- Motivation

- The use of digital technology for I&C systems of nuclear power plants (NPPs) and research reactors has been increased.
- As cyber security concerns have become as important as safety, the number of safety and security co-engineering has been increased.

- Objective

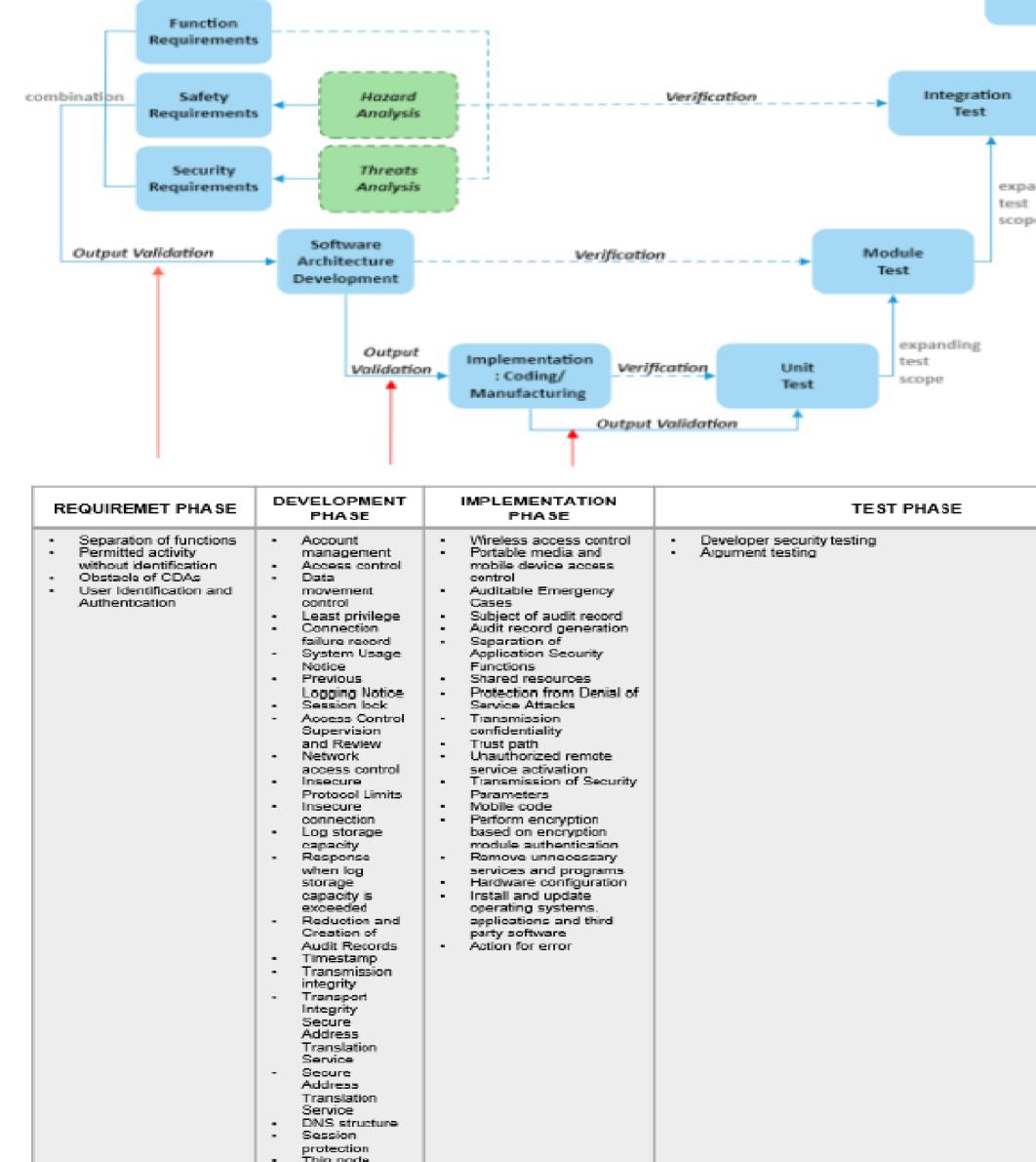

• It attempts to bridge the gap between safety and security by using the software verification model, V-model for developing digital I&C systems in an NPP.

1. Safety and Security

- Safety and Security are similar in terms of dealing with <u>risk</u> which is possible to bring system failure.
 - → Failure is a termination of the ability of a functional unit to provide a required function or operation of functional unit in any way other that as required (IEC, 2008).
- Safety considers <u>hazards</u>
 - \rightarrow Focus on how the system may harm the environment due to system failure.
 - \rightarrow Hazard means that a potential source of harm (IEC 2008).
- Security considers <u>threats</u>
 - \rightarrow Focus on how potential attacks may impact the system's assets and its operation due to vulnerability.
 - \rightarrow Threat is the potential cause of an incident which may result in harm to a system or organiz

2. V-model for Digital I&C Systems

V-model: One of Verification and Validation (V&V) models (Figure 1).
 Safety-related software of nuclear I&C systems should be required for the V&V process to impr safety and reliability. The V&V process is the process of checking that a software system meets specification and that it fulfills its intended purpose.



Operation

Figure 1. V-model of NPP I&C System

System

3. V-model on Safety and Security

- 50 of 101 security measures which related to V-model for design are selected.
- Relationship between safety and security was investigated on the basis of the V-model framework with the security measures.
 - Figure 2 : The detailed processes of mapping the V-model with safety and security. Also it can be used as basic data as it describes safety and security to be considered when designing with nuclear digital I&C.
 - The output of each phase should be validated with cyber security measurements which means that these measurements were checked during validation process.
 - ✓ After analyzing the cyber vulnerability in the requirements stage, it is important to qualify cyber security according to the analysis.
 - In addition, it can be seen that it is important to confirm that safety and security are satisfied through a phased test of the system.
 - ✓ Furthermore, as the impact of the requirements stage is large, the designer should invest the most time in the life cycle of the V model to make detailed cybersecurity requirements through vulnerability analysis.

	- minnode	
	 Password 	
	requirements	
	 Host Based 	
	Intrusion	
	Detection	
	System	
	Monitoring	
	tools and	
- 1	technologies	
- 1	- Information	
- 1	entry	
- 1	restrictions	

Figure 2. Process of risk analysis for safety and security

These activities can reduce design confusion and errors later in the design phase.

Conclusion

- As the degree of complexity and interconnection among systems have increased, it is important to make balance between safety and security.
- This model is possible to verify the output of each stage of the development lifecycle when the successful implementation of the input stage is achieved, this could be a structural and systematic model incorporating the phase of the development of digital I&C systems.

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP: Ministry of Science, ICT and Future Planning) (No. 2017M2B2B1072806)

