Simulation on Pinch Plasma using SPH with resistive MHD models

SPH : Smoothed Particle Hydrodynamics **MHD** : Magneto-hydrodynamics

Su-San Park

michle11@snu.ac.kr

Department of Nuclear Engineering Seoul National University

CONTENTS

1. Introduction

Motivation & Objective of Study

Motivation

- ✓ Pinch is the phenomenon that appears in a plasma when it is compressed by magnetic forces.
- ✓ In recent years, the pinch plasma has received large attention as an efficient source of radiation and a way to explore high-density plasma physics [1-3].
- Magnetohydrodynamic (MHD) simulation is one of the powerful tools for understanding the pinch phenomenon, and it is appropriate to use the resistive MHD model since the pinch plasmas have varying local resistivity with temperature and pressure.
- ✓ SPH has many advantages, particularly in pinch plasma simulations, as it can handle the problem of complex and deformable boundaries relatively easily.

Objective of Research

- 1. Investigation of the physical models required for the pinch plasma analysis
- 2. Implementation and verification of resistive MHD-based SPH model for the pinch plasma analysis

2. MHD Governing Equations

- What is MHD?
- Ideal MHD Governing Equations
- Resistive MHD Governing Equations

What is MHD?

Magnetohydrodynamics (MHD)

- Magnetohydrodynamics (MHD) is the study for the magnetic properties and behavior of electrically conducting fluids such as plasma.
- ✓ Magnetic forces act on charged particles and change their momentum and energy.
- ✓ In return, particles alter the strength and direction of the magnetic field.
- ✓ MHD plays a crucial role in various applications such as astrophysics, planetary magnetism, and controlled nuclear fusion etc.

What is MHD?

MHD governing equations

- The set of MHD equations can be summarized as the combination of Navier–Stokes equations of fluid dynamics and Maxwell's equations of electromagnetism.
- ✓ Various MHD model can be derived depending on the type of plasma and applied assumption.

Ideal MHD Governing Equations

Ideal MHD model

- The simplest MHD models, Ideal MHD, assumes that the fluid has so little resistivity that it can be treated as a perfect conductor.
- In ideal-MHD, various physical quantities such as <u>displacement current</u>, <u>electrical resistivity</u>, <u>viscosity</u>, <u>and</u> <u>thermal conduction</u> are neglected.
- ✓ The ideal MHD equations consist of the continuity equation, the Cauchy momentum equation, the induction equation, and the energy conservation equation.

Ideal-MHD governing equations

Mass conservation:	$\frac{D\rho}{Dt} + \rho(\nabla \cdot \boldsymbol{v}) = 0$	
Mtm conservation:	$\frac{D\boldsymbol{v}}{Dt} = \frac{1}{\rho} \nabla \cdot \left(\frac{\boldsymbol{B}\boldsymbol{B}}{\mu_0} - \left(\frac{1}{2\mu_0} \boldsymbol{B}^2 + P \right) \vec{I} \right)$	Neglecting
Induction equation:	$\frac{D\boldsymbol{B}}{Dt} = -\boldsymbol{B}(\nabla \cdot \boldsymbol{v}) + (\boldsymbol{B} \cdot \nabla)\boldsymbol{v}$	 Displacement current Electrical resistivity
Energy conservation:	$\frac{Du}{Dt} = -\frac{P}{\rho} \nabla \cdot \boldsymbol{v}$	 ③ Viscosity ④ Thermal conduction
Equation of State:	$P = (\gamma - 1)\rho u$	

Resistive MHD Governing Equations

Resistive MHD model

- When the fluid cannot be considered as completely conductive, but the other conditions for ideal MHD are satisfied, it is possible to use an extended model called resistive MHD.
- In this model, some resistive term are added to the induction equation and energy equation of the ideal MHD model, and additional calculations are performed to obtain the current density.
- ✓ It is appropriate to use the resistive MHD model since the pinch plasmas have varying local resistivity with temperature and pressure.

Resistive-MHD governing equations

Mass conservation:	$\frac{D\rho}{Dt} + \rho(\nabla \cdot \boldsymbol{v}) = 0$		
Mtm conservation:	$\frac{D\boldsymbol{v}}{Dt} = \frac{1}{\rho} \nabla \cdot \left(\frac{\boldsymbol{B}\boldsymbol{B}}{\mu_0} - \left(\frac{1}{2\mu_0} \boldsymbol{B}^2 + P \right) \boldsymbol{\vec{I}} \right)$	Current density:	$\boldsymbol{J} = \frac{1}{\mu_0} (\boldsymbol{\nabla} \times \boldsymbol{B})$
Induction equation:	$\frac{D\boldsymbol{B}}{Dt} = -\boldsymbol{B}(\nabla \cdot \boldsymbol{v}) + (\boldsymbol{B} \cdot \nabla)\boldsymbol{v} - \eta \nabla \times \boldsymbol{J}$		
Energy conservation:	$\frac{Du}{Dt} = -\frac{P}{\rho}\nabla\cdot\boldsymbol{v} + \frac{1}{\rho}\eta\boldsymbol{J}^2$		
Equation of State:	$P = (\gamma - 1)\rho u$		

3. SPMHD code Development

- SPMHD code Structure
- Effect of *V* · *B* Correction Term
- Effect of Dissipation Term
- ASPH Methodology
- SPH Governing Equations

SPMHD code Structure

Algorithm of SPMHD model

- Induction equation, energy equation are added to the existing SPH based CFD code (SOPHIA).
- Momentum equation and EOS are modified.
- Resistive terms is added in induction equation, and energy equation. (for resistive MHD)
- Several artificial dissipation terms that capture the shock and reduce numerical instability are incorporated.
- The divergence B correction term to maintain the divergence constraint of the plasma ($\nabla \cdot B = 0$) is incorporated.

Momentum conservation

Induction equation

Energy conservation $\frac{d\boldsymbol{v}_{i}}{dt} = \sum_{j} m_{j} \left(\frac{\widetilde{\boldsymbol{M}_{i}}}{\rho_{i}^{2}} + \frac{\widetilde{\boldsymbol{M}_{j}}}{\rho_{j}^{2}} + \Pi_{ij} \widetilde{\boldsymbol{I}} \right) \cdot \nabla_{i} W_{ij} - \boldsymbol{B}_{i} \sum_{j} m_{j} \left(\frac{\boldsymbol{B}_{i}}{\rho_{i}^{2}} + \frac{\boldsymbol{B}_{j}}{\rho_{j}^{2}} \right) \cdot \nabla W_{ij}$ $\frac{d\boldsymbol{B}_{i}}{dt} = \frac{1}{\rho_{i}} \sum_{j} m_{j} \left(\boldsymbol{B}_{i} \boldsymbol{v}_{ij} - \boldsymbol{v}_{ij} \boldsymbol{B}_{i} \right) \cdot \nabla_{i} W_{ij} + \left(\frac{d\boldsymbol{B}_{i}}{dt} \right)_{dissapation} + \left(\frac{d\boldsymbol{B}_{a}}{dt} \right)_{\eta}$ $\frac{d\boldsymbol{u}_{i}}{dt} = \frac{1}{2} \sum_{j} m_{j} \left(\frac{P_{i}}{\rho_{i}^{2}} + \frac{P_{i}}{\rho_{j}^{2}} + \Pi_{ij} \right) \boldsymbol{v}_{ij} \cdot \nabla_{i} W_{ij} + \left(\frac{d\boldsymbol{u}_{a}}{dt} \right)_{\eta}$ Resistive-MHD

Resistive-MHD

 $\nabla \cdot B$ Correction

Effect of $\nabla \cdot B$ Correction Term

- In simulations of magnetohydrodynamic (MHD) processes, the violation of the divergence constraint $(\nabla \cdot B = 0)$ causes severe stability problems. (\bigcirc)
- In the MHD simulation, $\nabla \cdot B$ is not completely zero, and an additional term to correct it is applied.
- After applying the *∇* · *B* correction term, it is confirmed that the numerical instability can be significantly controlled.

$$\left(\frac{d\boldsymbol{v}_i}{dt}\right)_{correction} = -\boldsymbol{B}_i \sum_j m_j \left(\frac{\boldsymbol{B}_i}{\rho_i^2} + \frac{\boldsymbol{B}_j}{\rho_j^2}\right) \cdot \nabla W_{ij}$$

Effect of Dissipation Term

- When there is a sudden discontinuous interface due to shock, unphysical oscillations occur, and artificial viscosity has been widely used in reducing these numerical errors [12-14].
- In MHD simulations, the addition of an <u>artificial resistivity</u> term in the induction equation in order to deal with discontinuities in the magnetic field is the main requirement.

$$\left(\frac{d\boldsymbol{v}_i}{dt}\right)_{diss} = \sum_j m_j \frac{\alpha v_{sig}(\boldsymbol{v}_i - \boldsymbol{v}_j)}{\bar{\rho}_{ij}} \cdot \frac{\boldsymbol{r}_{ij}}{|\boldsymbol{r}_{ij}|} \nabla W_{ij}$$

[Pressure profiles (t=0.1 s , Artificial resistivity O)]

ASPH Methodology

Application of ASPH

- The <u>Adaptive SPH (ASPH) method</u> is a technique that changes the smoothing length according to the particle number density.
- It replaces the isotropic smoothing algorithm of standard SPH.

$$\frac{du_i}{dt} = \frac{1}{2} \sum_j m_j \boldsymbol{v}_{ij} \left[\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} \right] \nabla_i W_{ij} \implies \left[\frac{du_i}{dt} = \frac{1}{2} \sum_j m_j \boldsymbol{v}_{ij} \left[\frac{P_i}{\Omega_i \rho_i^2} \nabla_i W_{ij}(h_i) + \frac{P_j}{\Omega_j \rho_j^2} \nabla_i W_{ij}(h_j) \right] \right]$$

SPH Governing Equations

Resistive-MHD governing equations (SPH formulation)

4. V&V and Test simulations

V&V of Developed SPMHD model

- 1. Hydrodynamic shock problem
- 2. Ideal MHD problem
- 3. Resistive MHD problem
- 4. Pinch problem
- Preliminary simulation of X-pinch (on-going)

V&V Simulation Cases

- ✓ The models required for the pinch plasma simulation have been sequentially incorporated.
- ✓ The simulations using the implemented models are compared with some reference Eulerian MHD simulations and analytical solutions.

V&V Cases	Assessment objectives	
Hydrodynamic shock problem	1 Capturing shock (artificial viscosity)	
 Slab detonation SOD shock tube 	 Capturing shock (artificial viscosity) Applying ASPH methodology 	
Ideal MHD problem	 Calculating magnetic field (induction equation) Controlling numerical instability (artificial resistivity) 	
 Brio&Wu shock tube Orszag-tang vortex 		
Resistive MHD problem	 Calculating current density (Ampere's law) Calculating resistive terms Incorporating the plasma resistivity model 	
 Resistive MHD shock tube (w/ constant resistivity) Resistive MHD shock tube (w/ varying resistivity) 		
Pinch plasma problem	1. Reviewing the comprehensive model	
- Magnetized Noh Z-pinch problem		

Hydrodynamic shock problem (1/2)

2D Slab detonation simulation

[2D slab detonation simulation (Pressure)]

[Pressure distribution]

0.2

0.4

Hydrodynamic shock problem (2/2)

2D SOD shock tube

0.0

-0.4

-0.2

0.0

x (m)

0.0

-0.4

-0.2

0.0

x (m)

0.2

0.4

✤ Ideal MHD problem

Brio & Wu shock tube

Resistive MHD problem

• Resistive MHD shock tube $(\rho^L, v^L, P^L) = (1.0, 0.4, 1.0), \quad (\rho^R, v^R, P^R) = (0.2, 0.4, 0.1)$

Magnetized Noh Z-pinch problem

- <u>Magnetized Noh Z-pinch problem</u> is an extension of the classic gas dynamics Noh problem.
- In this problem, current driven through a cylindrical column of the plasma induces the material to rapidly compress axially through J × B force.
- Recently, this problem proposed as a benchmark problem to determine whether pinch plasma can be simulated [15].
- At 30 nsec, some physical properties are compared and verified with the analytic solution.

 $\rho = 3.1831 \times 10^{-5} r^2 [g/cm^3]$ $v_r = -3.24101 \times 10^7 [cm/s]$ $B_{\phi} = 6.35584 \times 10^5 r [gauss]$ $p = C \times B_{\phi}^2 \quad (\beta = 8\pi \times 10^{-6})$

[Schematic diagram of Magnetized Noh Z-pinch problem]

Magnetized Noh Z-pinch problem

- Magnetized Noh simulation is performed to verify the implemented model in the pinch situation.
- The results for the 3 properties (density, pressure, and v_r) are compared with the theoretical values in the range of $r = 0 \sim 0.6 \ cm$.
- The implemented model predicts the pinch plasma behaviors fairly well.

Magnetized Noh Z-pinch problem

- Magnetized Noh simulation is performed to verify the implemented model in the pinch situation.
- The results for the 3 properties (density, pressure, and v_r) are compared with the theoretical values in the range of $r = 0 \sim 0.6 \ cm$.
- The implemented model predicts the pinch plasma behaviors fairly well.

Magnetized Noh Z-pinch problem

- Magnetized Noh simulation is performed to verify the implemented model in the pinch situation.
- The results for the 3 properties (density, pressure, and v_r) are compared with the theoretical values in the range of $r = 0 \sim 0.6 \ cm$.
- The implemented model predicts the pinch plasma behaviors fairly well.

Preliminary simulation of X-pinch (on-going)

*** X-Pinch Plasma Simulation**

5. Summary

Summary of Study

- Summary
 - : Implementation of resistive-MHD based **SPH** model for Numerical Simulation of Pinch Plasma
 - The resistive MHD based SPH model has been developed, and it has been verified and validated through various MHD simulations.
 - Several dissipation terms that capture the shock and reduce numerical instability are incorporated.
 - The divergence B correction term is incorporated to maintain the divergence constraint of the plasma (∇·B = 0).
 - The **ASPH method** is incorporated to enable accurate calculations for uneven particle distribution.
 - The implosion behavior of X-pinch plasma has been simulated with the developed SPH code. The simulation well produces the neck and beam shape, which are important features of X-pinch.
 - In order to derive the exact physical values of X-pinch simulation, the following models must be supplemented. (future work)
 - ① Correct EOS model
 - 2 Rigorous plasma resistivity model
 - ③ Radiation model
 - ④ Plasma ionization equilibrium equation

Thank you!

Su-San Park (michle11@snu.ac.kr)

Tel: +82-010-7237-8006

References

- 1) J. P. Chittenden, et al., "Two-dimensional magneto-hydrodynamic modeling of carbon fiber Z-pinch experiments", *Physics of Plasmas* 4, 4309 (1997).
- 2) S. A. Pikuz, et al., "X pinch as a source for X-ray radiography", NUKLEONIKA 46(1), 21–25 (2001).
- 3) R. K. Appartaim and B. T. Maakuu, "X-pinch x-ray sources driven by a 1μs capacitor discharge", *Physics of Plasmas 15*, 072703 (2008).
- 4) H. Alfvén, "Existence of electromagnetic-hydrodynamic waves", Nature 150 (3805): 405–406 (1942).
- 5) E. Priest and T. Forbes, "Magnetic Reconnection: MHD Theory and Applications", Cambridge University Press, First Edition, pp 25 (2000).
- 6) A. Otto, "3D resistive MHD computations of magnetospheric physic"s, Computer Physics Communications, Volume 59, Issue 1, pp. 185-195 (1990).
- 7) A. Pukhov, and J. Meyer-ter-Vehn. "Relativistic magnetic self-channeling of light in near-critical plasma: threedimensional particle-in-cell simulation", *Physical review letters* 76.21, 3975 (1996).
- 8) P.J. Cossins, "Smoothed Particle Hydrodynamics", arXiv preprint arXiv:1007.1245 (2010).
- 9) G.Toth, "The Divergence B = 0 Constraint in Shock-Capturing Magnetohydrodynamics Codes", The Journal of Computational Physics (1998)
- 10) D. J. Price, "Smoothed particle hydrodynamics and magnetohydrodynamics", Journal of Computational Physics 231 (3), 759-794 (2012)
- 11)S. H. Park et al., "Development of multi-GPU based smoothed particle hydrodynamics code (SOPHIA Plus) for highresolution and large-scale simulation on nuclear safety-related phenomena", In Proceedings of the Korean Nuclear Society Spring Meeting, Jeju, Republic of Korea, (2019).
- 12) M. Brio, C.C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 75, pp. 400–422 (1988).
- 13) Dinshaw S. Balsara, "The American Astronomical Society, find out more The Institute of Physics, find out more Total Variation Diminishing Scheme for Adiabatic and Isothermal Magnetohydrodynamics", The Astrophysical Journal Supplement Series, Vol. 116, 1 (1998)
- 14) D. Ryu, T. W. Jones, "Numerical Magnetohydrodynamics in Astrophysics: Algorithm and Tests for One-dimensional Flow", Astrophysical Journal, Vol.442, p.228 (1995).
- 15) A. L. Velikovich, et al., "Exact self-similar solutions for the magnetized Noh Z pinch problem", *Phys. Plasmas* 19, 012707 (2012).