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1. Introduction

A pinch is the phenomenon that appears in plasma 

when it is compressed by magnetic forces. In recent years, 

the pinch plasma has received large attention as an 

efficient source of radiation and a way to explore high-

density plasma physics [1-3]. However, the experimental 

implementation of pinch plasma is difficult because it 

requires high-performance current sources and various 

diagnostic equipment. For this reason, various numerical 

approaches have been attempted to analyze pinch plasma, 

and the magnetohydrodynamic (MHD) simulation is one 

of the powerful tools for understanding it. Various MHD 

models are utilized depending on the type of plasma and 

applied assumption. In this case, it is appropriate to use 

the resistive MHD model since the pinch plasmas have 

varying local resistivity with temperature and pressure. 

 In this study, the non-ideal MHD model has been 

developed and implemented to the smoothed particle 

hydrodynamics (SPH) framework. SPH has many 

advantages, particularly in pinch simulations, as it 

imposes no restrictions on the symmetry of the problem 

to be solved and therefore handles complex physics 

relatively easily. This model is based on the existing 

SPH-based hydrodynamics code, but it includes some 

additional calculations essential for analyzing pinch 

plasma such as the magnetic pressure force and the 

resistive induction equation. In addition, this model also 

incorporates a variety of numerical techniques for 

capturing shock or reducing numerical instability. 

Finally, the simulations are conducted for some 

benchmark problems to verify the implemented SPH 

code. 

2. Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study for the 

magnetic properties and behavior of electrically 

conducting fluids called plasma. Plasma is a state of 

matter composed of charged particles such as ions and 

electrons. In principle, in order to describe plasma 

behavior, the equation of motion of each particle should 

be calculated. However, it is practically impossible to 

solve the equations of motion for all particles that make 

up the plasma. Therefore, MHD equations are derived 

under the assumption that plasma can be considered as a 

single flow having the same density as ions [4]. The set 

of MHD equations are the combination of the Navier–

Stokes equations of fluid dynamics and Maxwell’s 

equations of electromagnetism. These differential 

equations must be solved simultaneously, either 

analytically or numerically. In this case, various MHD 

equations can be derived depending on the type of 

plasma and applied assumption. The MHD equations 

used in this study are ideal-MHD based equations and 

resistive MHD equations that include the effect of 

plasma resistivity in ideal-MHD. In this section, we 

describe each governing equation constituting these 

MHD equations. 

2.1 Ideal-MHD Governing Equations 

The simplest form of MHD, Ideal MHD, assumes that 

the fluid has so little resistivity that it can be treated as a 

perfect conductor. In addition, in ideal-MHD, a single-

fluid approximation that does not distinguish between 

electrons and ions is applied, and various physical 

quantities such as displacement current, electrical 

resistivity, viscosity, and thermal conduction are 

neglected. The ideal MHD equations consist of the 

continuity equation (Eq.(1)), the Cauchy momentum 

equation (Eq.(2)), the induction equation calculating the 

change in the magnetic field (Eq.(3)), and the energy 

conservation equation (Eq.(4)). Finally, the governing 

equations are closed by the equation of state (EOS) 

(Eq.(5)). These equations are expressed as follows [5]: 
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where 𝜌, 𝒗, 𝑃, 𝑩, and 𝑢 are the mass density, the velocity, 

the thermal pressure, the magnetic field, and the internal 

energy, respectively, �⃡�  is a unit tensor. In addition, 𝛾 and 

𝜇0 are the ratio of specific heats for an adiabatic equation

of state and permeability, respectively. 

2.2 Resistive MHD Governing Equations 

When the fluid cannot be considered as completely 

conductive, but the other conditions for ideal MHD are 

satisfied, it is possible to use an extended model called 

resistive MHD. In this model, the resistive term (Eq.(6), 

(7)) is added to the induction equation and energy 

equation of the ideal MHD model, and additional 

calculations are performed to obtain the current density 

(Eq.(8)). These added terms are expressed as follows [6]: 
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where,  𝜂  is the plasma resistivity, and 𝑱 is the current 

density, calculated as the curl of the magnetic field 

according to Ampere's law. 

3. Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a 

Lagrangian based particle method to solve fluid 

dynamics equations. Recently, it has been used in various 

fields with the development of computing techniques. 

The SPH method has definite advantages over the 

traditional grid-based numerical methods in dealing with 

applications that involve large deformations. For this 

reason, it is relatively easy to implement various types of 

physics, and therefore it is expected to be fit well into the 

simulation of pinch plasma. In this section, the basic 

concept of SPH method and the SPH formulations of the 

MHD model used to simulate plasma behavior are 

explained.  

3.1 SPH Kernel Approximation 

In the SPH method, the entire fluid system is 

expressed by a finite number of particles representing the 

material properties of that space, and the physical 

quantities such as density, momentum, and internal 

energy are calculated through the smoothing of 

neighboring particles. The smoothing procedure in the 

SPH method is based on the theory of integral 

interpolants using a delta function. However, the delta 

function is a discontinuous function, and hence it is 

difficult to handle numerically. To solve this problem, 

we can generalize the delta function to a continuous 

function W (known as the smoothing kernel) with a 

characteristic width h (known as the smoothing length), 

and the integral interpolant of a function f  is defined as 

follow [7]: 

< 𝑓(𝑟) > = ∫ 𝑓(𝑟′)𝑊(𝑟 − 𝑟′, ℎ)𝑑𝛺
 

𝛺
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The integral form of Eq. (9) can be discretized by 

representing the integral with a summation expression. 

< 𝑓(𝒓𝑖) > = ∑ 𝑓𝑗𝑊(𝑟𝑖 − 𝑟𝑗 , ℎ)𝑉𝑗𝑗   (10) 

where  𝑓(𝒓𝑖) is a function at the position 𝒓𝑖, subscript j

is the nearby particles of center particle i, and 𝑉(=
𝑚/𝜌 ) is the particle volume. Fig.1 shows the particle 

distribution with the kernel function. The value of the 

kernel weighting function is determined by the distance 

between particles, and it must be normalized over the 

entire computational domain. 

In a similar way, spatial derivatives of a function can 

be also simply approximated by taking derivatives of a 

kernel function. In this case, the gradient (Eq.(11)), 

divergence (Eq.(12)), and curl (Eq.(13)) of the function 

expressed as follows, respectively [8]: 
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3.2 Resistive-MHD SPH Formulations 

Based on the above SPH formula, the resistive MHD 

governing equations (described in Section 2.2) are 

expressed in the SPH code as:  
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In addition, a divergence B correction term to maintain 

the divergence constraint of the plasma (𝛻 ∙ 𝑩 = 0) [9], 

and several artificial dissipation terms that capture the 

shock and reduce numerical instability [10] are added. 

This physics model is incorporated into a multi-physics 

SPH code (named as SOPHIA) developed at Seoul 

National University [11]. 

Fig. 1. Particle distribution with kernel function 
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4. Test Simulation

In this study, the simulations using the implemented 

models are conducted for three benchmark cases; (1) 

Brio & Wu shock tube (ideal-MHD), (2) resistive MHD 

shock simulation, and (3) magnetized Noh Z-pinch 

problem. The simulation results are compared with some 

reference Eulerian MHD simulations and analytical 

solutions. 

4.1. Brio & Wu Shock Tube 

The Brio & Wu (1988) shock tube problem 

generalizes the classic hydraulics Sod shock tube to 

magneto-hydrodynamics [12]. The problem consists of 

two initial states (to the left and right of the origin) 

brought into contact at t=0. The left state is initialized as 

(𝜌, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , 𝐵𝑦 , 𝐵𝑧 , 𝑃) = (1,0,0,1,0,1) and the right state

(0.125,0,0,-1,0,0.1). This example tests whether the code 

can accurately represent the shocks, rarefactions, contact 

discontinuities, and the compound structures of MHD. 

For this reason, this problem has widely used as a 

benchmark problem to validate ideal MHD calculations 

[10, 13, 14]. In this study, 2D Brio&Wu shock tube 

problem is tested with 1000 × 50 particles in the range 

𝑥 ∈ [−0.5,0.5]. 
We obtained 6 physical quantities (density, pressure, 

x,y-directional velocity, internal energy, and magnetic 

field) of the Brio&Wu shock problem through the 

SOPHIA code. Fig. 2 shows the simulation results in the 

Brio&Wu shock tube at 0.1 sec. The physical quantities 

of all particles onto the x-axis are shown as black dots, 

while the red lines show the numerical solution obtained 

from a proven Riemann solver [13]. As a result, the 

SOPHIA code performs numerically accurate 

simulations about the ideal MHD problem.  We also have 

confirmed the effect of some additional terms such as the 

correction terms to satisfy 𝛻 ∙ 𝑩  constraints, and 

artificial dissipation terms to handle shocks through this 

problem. 

Fig. 2. Brio&Wu shock tube simulation results 

4.2. Resistive MHD Shock Tube 

In the actual pinch plasma simulations, the effect of 

plasma resistivity on plasma behavior must also be 

considered. Therefore, the resistive term is added in the 

induction equation and the energy equation, and the 

current density is additionally calculated in the SOPHIA 

code. In order to verify that the added terms work 

correctly, we perform the resistive MHD shock tube 

problem in which plasma resistivity is distributed in the 

Brio&Wu shock tube. Fig. 3 and 4 show the distribution 

of some physical quantities obtained when plasma 

resistivity is constant (𝜂 = 1)  and it is a function of 

density(𝜂 = 10−3𝜌−2), respectively. In the case where

resistivity is constant, the initial condition is 

(𝜌𝐿 , 𝑣𝑥
𝐿 , 𝑃𝐿 , 𝜌𝑅 , 𝑣𝑥

𝑅 , 𝑃𝑅) = (1,0.4,1, 0.2,0.4,0.1), and in the

case where the resistivity varies with density, the initial 

condition is ( 𝜌𝐿 , 𝑣𝑥
𝐿 , 𝑃𝐿 , 𝜌𝑅 , 𝑣𝑥

𝑅 , 𝑃𝑅 ) = (1,1,0.5,

0.125,0.1,-0.5). As a result, the simulation shows very 

good agreement with the reference Eulerian code data. 

Interestingly, in the resistive MHD simulations, it is 

confirmed that stable calculations are performed without 

using the artificial resistivity term which contributed 

greatly to numerical stabilization in the ideal MHD 

simulations. We interpret this is because the actual 

plasma resistivity has a greater effect on its behavior than 

the artificial resistivity term. 

Fig. 3. Resistive MHD simulation results (η=1) 

Fig. 4. Resistive MHD simulation results (η=10-3𝜌-2) 
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Fig. 5. Magnetized Noh Z-pinch simulation results from 2-dimensional SPH code 

4.3. Magnetized Noh Z-pinch Problem 

A. L. Velikovich (2011) proposed the Magnetized 

Noh problem as an example to verify the ability to 

analyze pinch plasma [15]. Noh problem has been used 

over the years for verification of codes designed to deal 

with implosion such as in inertial confinement fusion, to 

test the hydrodynamic component of MHD codes. The 

extension of this classic gas dynamics Noh problem to 

the electromagnetic problem is the Magnetized Noh Z-

pinch problem. The operation of a Z-pinch is very simple. 

A current driven through a cylindrical column of the 

plasma induces the material to rapidly compress axially 

through J × B force. In this problem, the initial properties 

of plasma are expressed as a function of r, the distance 

from the central axis. (ρ = 3.1831 × 10−5r2 [g/cm3],
vr = −3.24101 × 107 [cm/𝑠𝑒𝑐] , B𝜙 = 6.35584 ×

108r [gauss] , 𝑃 = 𝐶 × B𝜙
2  ) In this case, 𝛽, which

represents the ratio of the plasma pressure and the 

magnetic pressure, is  8π × 10−6 . Fig. 5 is the

comparison of the analytic solution and the results 

obtained through SOPHIA code for magnetized Noh 

problem. As a result, it is found that the implemented 

model predicts the pinch plasma behaviors fairly well. 

5. Summary

In this study, a resistive MHD based SPH code is 

developed for the simulation of electrically conducting 

fluids, especially pinch plasma. This non-ideal MHD 

code is configured by sequentially adding terms 

necessary for pinch simulation to the existing SPH-based 

hydrodynamics code. For the verification of the model, 

three benchmark simulations are performed using the 

implemented code; (1) Brio & Wu shock tube (ideal-

MHD), (2) resistive MHD shock simulation, and (3) 

magnetized Noh Z-pinch problem. The simulations are 

compared with some reference Eulerian MHD 

simulations and analytical solutions. The results of the 

simulations quantitatively and qualitatively show that 

SOPHIA code well simulates the behavior of the plasma 

including a simple Z-pinch problem. 
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