Preliminary Study for Risk Schedule Management of NPP Project: An illustrative Example

Myeongjae Shin ^{a*}, Usman Ismaila ^a, Wooyong Jung ^a

^aDepartment of NPP Engineering, KEPCO International Nuclear Graduate School (KINGS), 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan, Korea 45014 ^{*}Corresponding author: shinmyeongjae@gmail.com

1. Introduction

A nuclear power project has specific characteristics such as complicate interface, diversity of procedures and process, rigid security, and safety requirements, which impact on schedule delay and cost overrun. These could jeopardize the license to operate the nuclear power plant licenses[1]. To develop a baseline of reliable planning and performance measurements to accurately estimate timelines and costs, project participants must identify and analyze factors causing delays and consider them as project planning risks.

Thus, we analyzed and compared the international construction project, international NPP project and the NPP project in progress in the UAE, and aim to develop a framework for schedule risk analysis.

Figure 1. Framework for Research

2. Delay Factor Analysis

In this section quantitative analysis was adopted. There are many researches that already analysis on regard delay causes of international construction project. For case study, NPP construction project in UAE was analyzed. Two groups were compared to identify the character of UAE project.

2.1 Delay Causes in International Construction Project and NPP Project

In the research of 24 reviews, delay cause in international construction projects were identified as; see right column of below table 1 [2]. Construction of a nuclear power plant project has its own characteristics that affect the exact project schedule and cost estimation. Inaccurate estimates can result in delays and over-costs, which could jeopardize the license to operate the nuclear power plant licenses.

Samer Alsharif and Aslihan Karatas in another study conducted a study and found the main causes of the delay in the nuclear power plant construction project [3].

|--|

Missing Schedule Updates	Inadequate planning			
Design Error/ECR	Finance and payment			
Scope Change	Slow in Approving			
Contractor	Variation			
Materials/Vendor	Ground condition			
Funding	Labour supply, and subcontractors			
	Design changes			
Resources Productivity	Material shortage			
Plant Support Engineering	Manufactured and imported items			
Rework	Site Management			
Owner decision	Weather			
Weather	Fluctuation			
Other/Delays	Construction mistake			
	Contractors experience			
	Contingency or unforeseen			

Table 1. Causes for Delay

2.2 Delay Causes in NPP Construction Project in UAE (Identification of Problems)

Authors analyzed total 89 monthly progress reports (MPRs) from Jan 2010 to May 2017. MPR is an official document, and the author can analyze it based on that report. Delayed activities are described and reasoned.

Count
3,971
811
470
383
315
311
293
196
186
125
103
75
71
58
51
39
23

Table 2. Causes for Delay in UAE NPP Construction Project

Total delayed activities were 7,513. MPR contains most issues regarding schedule. The MPR

However, the NPP construction project in UAE uses MPR to simply manage activity number, impact, original schedule, causes of delay and measures. The omission of the managing field and data is insufficient for effective schedule management. Also, construction risk management was not effective. Currently, risk management in the UAE NPP is managed by hand without scientific or computerized tools.

3. Schedule Risk Analysis

Schedule Risk analysis involves examining how project outcomes and objectives might change due to the impact of the risk event. Once the risks are identified, they are analysed to identify the qualitative and quantitative impact of the risk on the project so that appropriate steps can be taken to mitigate them. This study used Primavera Risk Analysis to analyse the risk of the project and to find the anticipated schedule, cost and finish date. Analysis used 17 factors of delay identified previous work above to mitigate and compare the project's auxiliary building schedule, cost, and finish date.

Ð	Description	Penairing Duretion	5841	Fren	1		3 7 4 4 5 6 2 1 6 2 7 4 2 4		ation .	Most Likely	Marchure Duration	Duration Function	Dudget Cest	Resoluting Cost	Total Cost
CPS_AB_E	E from #0_52-2011	876	A27/82/2009	26/982914									16,262,844	\$95,252,890	\$16,262,89
10000204	MLESTONE - IROJECT START	0	A277.22009	A27/12/2009	1.			г					\$0	80	1
10000208	MLESTONE - POWER BLOCK		A27/09/2011	A276002011	þ			L	0		0	Triangle(3,0,0)	\$0	\$0	
10000208	MLESTORE - UNIT 1 PIRST CONCRETE POURING IRCR DASEM		101/07/2012	300502012	11	p			0	0	0	Triangle(2,0,0)	50	50	
13200012	AD DACIFEL	193	14020013	31/08/2013					190	199	219	Triangle(100,199,219)	\$919,900	\$919,900	\$919,9
13200021	AD MUDWAT CONCRETE	122	15/01/2012	15050012	17			t	105	122	134	Trangle(105(122)134)	\$552,700	\$552,700	\$562,7
12200890	AB CATHODIC PROTECTION/FOR	45	01/12/0011	14010012	14				22	45	50	Triangle(22,45;50)	\$208,500	\$205,500	\$200,9
12200511	AD BRECT STRUCT STEEL EL SP TO 107	92	16/09/0012	16/12/2012			— I	L	80	92	101	Triangle(80,92,101)	\$404,700	\$424,700	\$424,7
12200512		75	16/04/0013	30/06/2013					95	76	04	Triangle(90,70;84)	\$351,100	\$351,100	\$251.5
13200613		- 61	15060013	14/08/2013					63	61	67	Triangle(\$2,81,87)	\$382,100	\$292,100	\$282,9
12210030	AB BASEMATEL SELCOMMON MATEMATI	106	16/03/0012	2906/2012	1P	- tom		1	92	109	117	Triangle(82,106,117)	\$499,100	\$499,100	\$499.7
13210046		121	1610/0012	19620913					105	121	100	Trange(105)121,1305	\$558,100	\$559,100	\$550,5
13210041	AB FREP INALL TO BOS EL 68' 8 78'	602	16/10/2012	01/03/2014		<u>ب</u>	711 II II		437	562	652	Trangle(#37;502;552)	\$2,310,700	\$2,310,700	\$2,010,7
13220030	AB DRIP DECK SLAB BL 79 LVL 2 AREA 163	1.20	01/12/2012	30/03/2013	12			1	934	120	132	Trangle(104;120;130)	\$953,500	\$953,500	\$553,9
13220C31	AB ORSPIDECK SLAB BL 58 & TO LVL 2 AREA 204	105	02/01/2014	16/04/2014		4	┯┰┼╶╫╶┝		91	105	116	Triangle(91;105;118)	\$404,500	\$434,500	\$454,5
13220046		181	01/01/2013	306502013	12	<u> </u>	┉╧╧╧┓╢╴╎╹	1	157	161	199	Trangle(157,101,190)	\$534,100	\$834,100	\$834,7
13230038	AD DRISP DECK SLAD BL 1007	155	14/02/0013	31/07/2013					145	168	105	Trangle(146(160,105)	\$774,300	\$774,300	\$774.3
13230040		135	01/05/0013	15092013	12				120	138	152	Triangle(120,130,152)	\$535,300	\$535,300	\$636,3
13240038		107	16.06.0013	30/09/2013					93	107	110	Triangle(\$3,107,118)	\$450,700	\$423,700	\$483,7
12240041	LVL #AREA183 AD FREPHALL TO DOG EL 137-6	92	21.0270213	2010/2013	11				-						5424.7
13250031	LVL 4APEA254 AD CRIP DECK SLAD BL 137-6	90	150920013	10120013	1		1								

Figure 2. Input Risk Analysis

After running pre and post-mitigation of risk register authors can get the data. Figure 2 allows risk management to compare project impacts with and without mitigation of risk and no risk at all. If the project does not consider the risk, the auxiliary building would be finished on 30 Apr 2014. In case of pre-mitigate, highest probability to finish in 10 May 2014, beside postmitigate is on 7 May 2014, the result provides a difference between risk management and non-risk management.

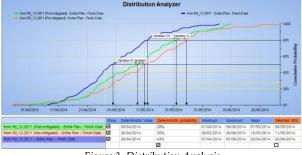


Figure 3. Distribution Analysis

4. Preliminary Schedule Management Framework

During the analysis of delay causes of UAE project, the authors confirmed the limitations of the project's schedule management. In particular, the project was focused on monitoring for the construction schedule. This monitoring was useful to check the construction status of the past and present, but it can be a fatal disadvantage that cannot build a mitigation measure for schedule impact or lesson learned for next project. MPR's schedule delay table, which is the center of the

project's	schedule	management,	was	changed	and
operated	several tim	es after the proj	ect sta	arted.	

Field	Use in	Recom	Description
	UAE	mend	
		to add	
Activity Number	0	0	Unit, PBS, Work type
Activity Name	0	0	Activity Name
Planned Start/Finish	0	0	To see the Original
Date			Schedule
Duration(Current)	Х	0	To see the Original
			Schedule
Critical	Х	0	If it is critical, the
			management can
			manage intensively
Actual Start/Finish	Х	0	To see the Original
Date			Schedule
Duration(Actual)	Х	0	To see the Original
			Duration of Work
Reason of Delay	\triangle	0	To see the Reason of
			Delay
Impacted	Х	0	To check the root cause
Precedence Activity			of delay
Impacted	Х	0	To see the Impacted
Successive Activity			Successive Activity
Mitigation	\triangle	0	To manage catchup
Measures			- *
Division of	\triangle	0	To give a responsibility
Responsibility			

Table 3. Suggested field for Managing the Schedule Effectively

The Prime Contractor of the project aims to be the leading company of the International Nuclear Power Plant in the future. In order to do that, it is necessary to accumulate construction experience in UAE as meaningful data. It is necessary to establish and manage a consistent and meaningful schedule management framework from now on.

5. Conclusions

This study reviewed various studies and practice in UAE. The major delay factors of the UAE project are investigated in Section 2, and compared to other construction project. The necessity of schedule risk analysis to response these factors of delay was explained in Section 3. In addition, effective schedule management and additional criteria required for schedule management were suggested in Section 4. The results show the many necessities of adopting advanced schedule management skill in field. Of course, due to the lack of the data and information, authors assumed the data and practices, but this suggested framework for risk schedule management would be useful for considering risk causes and optimizing the schedule risk. In the near future, Korean team might have another chance to build the NPP in abroad. In that time, this kind of schedule management tool would be helpful to optimize schedule and to manage risk.

Acknowledgement

This research was supported by the 2020 Research Fund of the KEPCO International Graduate School (KINGS), the Republic of Korea.

REFERENCES

- M. J. Focazio, A. H. Welch, S. A. Watkins, D. R. Helsel, M. A. Horn, "Water-Resources Investigations Report 99-4279", US Geological Survey (USGS), 1999.
- [2] G. Agyekum-Mensah, A. D. Knight, "The professionals' perspective on the causes of project delay in the construction industry", *Engineering, Construction and Architectural Management*, vol 24, 5, Art. 5, 1 2017, doi: 10.1108/ECAM-03-2016-0085.
- [3] S. Alsharif A. Karatas, "A framework for identifying Causal factors of delay in nuclear power plant projects", *Procedia Engineering*, vol 145, pp 1486–1492, 2016.