NAT2020 & RMSP-VI, Daejeon, 2020.11.12~13.

* ysha19840704@kaeri.re.kr

Preliminary study on ion exchange adsorber for the development of ⁸²Sr/⁸²Rb generator Yeong Su Ha*, Kye-Ryung Kim

Introduction

- Nuclear imaging: one of the most powerful means available for non-invasive diagnosis of myocardial disease
- Several radionuclides are available for myocardial perfusion imaging
- ¹³N, ¹⁵O, ²⁰¹TI: Cyclotron and ⁸²Rb, ^{99m}Tc: Generator
- Advantages of ⁸²Rb-PET compared with ^{99m}Tc-SPECT in the diagnosis of myocardial disease
- ⁸²Rb as a positron emitter allows the full advantages of PET such as image quantification with superior sensitivity, diagnostic performances
- A medical radioisotope ⁸²Rb is generator-produced from its parent radioisotope ⁸²Sr
- KOMAC already reported that high purity Sr to meet appropriate specifications was prepared by an optimized purification method
- > Here, to select the appropriate ion exchange absorber in generator system, various studies on absorber were conducted as a follow-up study
- * PET : positron emission tomography
- * SPECT : single photon emission computed tomography
- * KOMAC : Korea Multi-purpose Accelerator Complex

Previous work

Experiments and Results (Cold Model)

• Validation of ⁸²Sr purification procedure • Schematic diagram of ⁸²Sr/⁸²Rb generator • Procedure for the adsorption of ⁸²Sr into column

components

96.97 <u>+</u>1.67

Fi	ter		
		-	FIVE

|--|

Comparison between meta- & alpha-form adsorbent

Alpha Meta Alpha Meta

- The meta-form is more crystalline (plan to add XRD data)
 The alpha-form is acid soluble
- Visual inspection & pH measurement of eluate

- Image: Index of the second second
- Study on the adsorption of Sr into the generator column (cold model)

Tin(IV) oxide size (µm)	рΗ	Temperature (°C)	Adsorption yield of Sr (%)
250 ~ 500 (alpha + meta)	7	50	76.7 (6.92 μg/9.02 μg)
250 ~ 500 (alpha + meta)	8	50	76.6 (6.85 µg/8.94 µg)
125 ~ 250 (alpha + meta)	10	room temperature	74.5 (6.56 μg/8.81 μg)
250 ~ 500 (alpha + meta)	10	room temperature	64.2 (5.83 µg/9.08 µg)
no filtration (alpha + meta)	10	room temperature	58.6 (5.20 μg/8.87 μg)
75 ~ 150 (alpha)	10	room temperature	96.4 (7.23 μg/7.50 μg)

*Custom order (Keeling & Walkers)

- Low ion-exchange yield or Sr was observed in the mixture of alpha- and meta-form adsorbent

- Clear solution

 \rightarrow higher ion-exchange yield of Sr (96.4%) in the pure alpha-form adsorbent

- Total 9 times test was conducted : adsorption yield of Sr was 97.62±1.57%

Conclusion & Future plan

Our research group is trying to apply the optimized purification procedure to radioactive ⁸²Sr for reliable ⁸²Sr production

- We drew a schematic diagram of ⁸²Sr/⁸²Rb generator system
- We performed comparison studies on characteristics of ion exchange absorber
- We found that alpha-form absorber for the generator column showed higher ion-exchange ability than those of meta-form absorber Finally, enough adsorption yield of Sr (97.62±1.57%) was shown in alpha-form absorber

Acknowledgement: This work has been supported through KOMAC (Korea of Multi-purpose Accelerator Complex) operation fund of KAERI by MSIP (Ministry of Science, ICT and Future Planning)