
Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

Animation of Laser Scanning Process for Deep Learning-based Reactor Parts Classification

Hyeji Na*, Sungmoon Joo and Jonghwan Lee

Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, Korea
*Corresponding author: nahyeji@kaeri.re.kr

1. Introduction

This paper presents an efficient method to animate

laser scanning process using Blensor, an open source

simulation package for scanning sensors [1]. The

simulation of laser scanning process generates synthetic

point cloud data which is used for the training of a deep

learning model for reactor parts classification [2]. The

animation shows the change in the position of a scanner

and the generation of the point cloud as a result of the

scan.

This paper is organized into 4 sections. Section 2.1

briefly introduces the point cloud scan process

animation. Section 2.2 explains the interpolation method

for changing the scanner position. Section 2.3 shows a

comparison of the two methods of converting point

clouds into meshes. Section 3 concludes the paper.

2. Methods and Results

In this section, the interpolation method for changing

the scanner position is described, and two methods of

converting point clouds into meshes are compared.

2.1 Animation Overview

The point cloud scanning process animation is a

means to easily convey information about the location

of the scanner and resulting point cloud overlayed on

the target object, so that viewers understand the

scanning process and how synthetic point clouds are

obtained. As shown in Figure 1, a scanner looks at the

object and scans the object while moving on the surface

of virtual sphere. An image, such as shown in Figure 1,

is saved each time the scanner is moved or a scan is

generated. The animation created by splicing all the

saved images together.

Figure 1. A scene during the scanning process

2.2 Interpolation

The animation function of Blensor uses interpolation

to express the movement of an object smoothly.

However, it cannot contain the creation of new objects

over time. Therefore, to create an animation that shows

both the position change of the scanner and the

generation of synthetic point cloud, the method of

creating animation from still images should be used. In

case of using still images, code that performs

interpolation function should be written in blensor script.

This can be easily solved using the scipy module [3].

The splprep function of the scipy module was used to

find the B-spline representation of the scanner's position.

After finding the B-spline expression, the splev function

of the scipy module was used to evaluate the B-spline

and its derivatives. As a result, the movement of the

scanner as shown in Figure 2 is obtained. The yellow

wire-frame sphere is the sphere over which the scanner

moves, and the blue line is the path of the scanner. The

red points are where the scanner scans a target object.

Figure 2. Movement of scanner

2.3 Methods of converting point clouds into meshes

This section describes two methods of rendering

point clouds using meshes and compares the two

methods in terms of computation time.

The first way to turn a point cloud into a mesh is to

create a small cube and copy that cube repeatedly at

each point. If it is the first point, a cube is created and

the location, color, and size of the cube are specified. If

it is not the first point, copy the first cube to a new

location. And if it's not the last point, it repeats the

process, and if it's the last point, it gets the job done.

The process is summarized in Fig.3.

Figure 3. Flow chart (the first method)

The second way is to use the bmesh module [4]. If it

is the first point, a cube is created and characteristics of

the cube are specified. Then, create an empty bmesh and

a mesh that will be the basis for the bmesh operation. If

it is not the first point, a new vertex is created at each

point. After the vertice of the last point have been

created, convert the bmesh to a mesh and duplicate the

child objects at all vertices of the base mesh. Finally, if

the base mesh is set as the parent of the cube that was

first created, all points in the point cloud have a cube

corresponding to it. The process is summarized in Fig.4.

Figure 4. Flow chart (the second method)

Both methods render the same point cloud image

but the computational efficiencies differ. Therefore, it

is necessary to compare the two methods to determine

which method to choose. For the comparison of the

two methods, the time taken to convert point clouds

into meshes for each method was measured. Based on

the measurement results, the time taken to convert a

point into a mesh was calculated. Fig.5 is a graph

showing the calculation results. Numbers on the x-

axis of the graph is numbers entered by the user. It

takes a lot of time to perform the operation without

sampling the point cloud. So, it was sampled for the

quotient of the number of points in the point cloud

file divided by the number entered by the user. Fig. 5

is the result of each measurement after inputting the

user input number as [50, 40, … 10]. As a result,

using 'bmesh' reduces the time by approximately 53%

compared to using the 'cube copy' method.

Figure 5. Time to convert a point into a mesh according to

user input numbers

3. Conclusions

This study introduces the interpolation method and

the point could to mesh conversion method, which are

techniques required to animate the point cloud scanning

process in Blensor, and compares the two methods to

convert the point cloud to mesh. The result of the

comparison is that the bmesh method saves 53% time

compared to the cube-copy method.

REFERENCES

[1] https://www.blensor.org

[2] Sungmoon Joo et al, “Application of a Deep Learning

Network to 3D Modeling of Nuclear Facilities,” Waste

Management Symposia, March 2019.

[3] https://docs.scipy.org/doc/scipy/reference/interpolate.html,

last access on Aug. 14 2020.

[4] https://docs.blender.org/api/2.79/bmesh.html, last access

on Aug. 14 2020.

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

https://www.blensor.org/

