

Development of high-speed multichannel data acquisition system for large-area Compton camera (LACC)

2020. 12. 17

<u>이 준 영</u>·이 현 수·정 재 린·최 세 훈·김 도 엽·김 찬 형*

한양대학교 원자력공학과

HANYANG UNIVERSITY

2020 **한국원자력학회 추계학술발표회**(20.12.17 – 20.12.18)

Introduction

Gamma imaging applications and requirements

Requirement of imaging system for field applications

High performance (Sensitivity / resolution) Durability (Mechanical / electronical)

Large-area Compton Camera (LACC)

Large-area Compton Camera (LACC)

- High sensitivity: 7.2×10⁻⁵ (@662 keV)
- Image resolution: 5.9° (@662 keV)
- 3D image reconstruction

Quartet scintillation detector

- $\blacktriangleright \quad \text{High sensitivity:} > 7.2 \times 10^{-5} (@662 \text{ keV})$
- Image resolution: ~5.9° (@662 keV)
- 3D image reconstruction
- High immunity to external shock and vibration

Quartet scintillation detector

Research objectives

FPGA-based high-speed multi-channel data acquisition (DAQ) system

- Digital signal processing
 - <u>Good energy resolution &</u> <u>minimum pulse pile up</u>
 - Flexibility in the choice of parameters

- > Optimization concerns:
 - <u>Good energy resolution</u>
 - Low triggering from noise
 - Lower limit of energy measurement

FPGA based high-speed multi-channel DAQ system

Component detector: detector head

Quartet scintillation detector

(order-made; Scintitech, MA, USA)

- Crystal: Nal(Tl) (14.6 cm × 14.6 cm)
- PMT: XP3290; Photonis, France
- Nine PMT in one module
- Four modules in one detector head
- Two detector head in on Compton camera
 - → 9 PMTs ×4 modules×2 detector = 72 channels

FPGA based high-speed multi-channel DAQ system

FPGA board (order-made; CRUXELL, Korea)

Master-slave integrated system
 Master board: control/transfer pulse height
 Slave board: smoothing/trigger/pulse height
 measurement

Input/output signals

Input: PMT voltage signals from the detector Output: PMT voltage pulse height (USB3.0)

FPGA based high-speed multi-channel DAQ system

Slave board

- The **14-bit ADC** (TI, USA) samples and digitizes the 9 PMT signals per slave board at 100 MHz clock rate.
- The digital signal processing with **Cyclone 5 FPGA** (Altera, USA)

Digital signal processing: smoothing

- Trigger interval (c₁):
 100, 200, 300, ..., 900, 990 ns
- Trigger threshold:
 9, 18, ..., 126, 135 ADC unit
- The generation of trigger, based the difference between the current point and the previous (c₁) point

- Trigger interval (c₁):
 100, 200, 300, ..., 900, 990 ns
- Trigger threshold:
 9, 18, ..., 126, 135 ADC unit
- The generation of trigger, based the difference between the current point and the previous (c₁) point

- Trigger interval (c₁):
 100, 200, 300, ..., 900, 990 ns
- Trigger threshold:
 9, 18, ..., 126, 135 ADC unit
- The generation of trigger, based the difference between the current point and the previous (c₁) point

- Trigger interval (c₁):
 100, 200, 300, ..., 900, 990 ns
- Trigger threshold:
 9, 18, ..., 126, 135 ADC unit
- The generation of trigger, based the difference between the current point and the previous (c₁) point

- Trigger interval (c₁):
 100, 200, 300, ..., 900, 990 ns
- Trigger threshold:
 9, 18, ..., 126, 135 ADC unit
- The generation of trigger, based the difference between the current point and the previous (c₁) point

- Trigger interval (c₁):
 100, 200, 300, ..., 900, 990 ns
- Trigger threshold:
 9, 18, ..., 126, 135 ADC unit
- The generation of trigger, based the difference between the current point and the previous (c₁) point

Digital signal processing: pulse height of PMT signal

- A. Baseline measurement interval (c_2): 2⁰, 2¹, 2², 2³, 2⁴ clock
- B. Maximum measurement interval (c_4) : 100 clock

Digital signal processing configuration optimization

Optimization of signal processing parameters

Optimization: smooth window

Optimization: trigger

<u>Trigger</u>

- Trigger interval (c₁):
 100, 200, 300, ..., 900, 990 ns
- Trigger threshold:
 9, 18, ..., 126, 135 ADC unit

Lower limit of energy measurement

- \rightarrow high efficiency (~15%)
- \rightarrow improved image resolution

Time (clock)

Trigger threshold & trigger interval

Source: ¹³⁷Cs (80 μCi) Position: @(0, 0, 50 cm) Measurement time: 10 min Trigger threshold (ADC unit): 45, 54, 63, 72, 81, 90, 108, 117, ..., 252, 261, 270 Trigger interval (ns): 100, 200, 300, 400, 500, 600, 700, 800, 900, 990

Trigger threshold & trigger interval

Source: ¹³⁷Cs (80 μCi) Position: @(0, 0, 50 cm) Measurement time: 10 min Trigger threshold (ADC unit): 45, 54, 63, 72, 81, 90, 108, 117, ..., 252, 261, 270 Trigger interval (ns): 100, 200, 300, 400, 500, 600, 700, 800, 900, 990

Optimization: baseline measurement interval

- B. Baseline side offset (c_3) : $(c_1)+1$ clock
- C. Maximum side offset: 1 clock
- D. Maximum measurement interval (c₄): 100 clock

Optimization: baseline measurement interval

- A. Baseline measurement interval (c_2): 2^0 , 2^1 , 2^2 , 2^3 , 2^4 clock
- B. Baseline side offset (c_3) : (c_1) +1 clock
- C. Maximum side offset: 1 clock
- D. Maximum measurement interval (c₄): 100 clock

Performance evaluation with optimized parameters

Energy resolutions as count rates

Energy (MeV)	Activity (µCi)	Position	Count rate (kHz)	Energy resolution (%)
0.662	7.12	@(0, 0, 50 cm)	7.4	6.83
	80	@(0, 0, 50 cm)	48	6.96
	160	@(0, 0, 50 cm)	87	6.89
	250	@(0, 0, 50 cm)	131	6.94
	250	@(0, 0, 30 cm)	242	7.19
	250	@(0, 0, 10 cm)	880	7.99
	250	@(0, 0, 5 cm)	1200	8.60

Conclusion

Conclusion

- In the present research, the high-speed multi-channel data acquisition system, directly digitizing PMT signals, was developed and the optimization of the parameters was conducted.
- The developed FPGA based high-speed multi-channel DAQ system includes smoothing, triggering, and pulse height measurement.
- Considering the stable performance and characteristic of the noise, each parameter was optimized.
- The Optimized system not only performed energy resolution of 6.9% for the ¹³⁷Cs source without significant peak shifting, but also maximized the performance lower limit of energy measurement (~30keV).

Thank you!