KNS2020 Autumn Meeting

Re-exploration of pretrained artificial intelligence model for a nuclear power plant autonomous operation

Dec 17, 2020

Jae Min Kim Hong Jun Yang Seung Jun Lee*

Ulsan National Institute of Science and Technology Address 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Korea Tel. +82 52 217 2371 Web. psa.unist.ac.kr

NUCLEAR Safety Assessment and Plant HMI Evolution

CONTENTS

- 1. Introduction
- 2. Purpose
- 3. Framework of autonomous operation
- 4. NPP environment
- 5. Feasibility study
- 6. Application
- 7. Summary
- 8. Future work

NSAPHE Introduction

Characteristics of startup and shutdown operation

- Cold-shutdown mode ↔ Hot-standby mode : completely manual
- More than 20 hours to finish startup and shutdown operation
- High burden for operators 18% of unintended shutdown during startup and shutdown operation by human error

SAPHE Introduction

Characteristics of startup and shutdown operation

- Cold-shutdown mode ↔ Hot-standby mode : completely manual
- More than 20 hours to finish startup and shutdown operation
- Supervisory learning requires huge amount of training datasets
- Lack of operation datasets

NSAPHE Purpose

- ✤ To reduce the human error by eliminating human intervention
- Develop autonomous operation system for startup and shutdown operation
 - Framework for autonomous operation is suggested
- ✤ Determine what algorithms can be applied to NPP operation
 - Agents are expected to learn operating policy for each block

NSAPHE Framework of autonomous operation

✤ General operating procedure (GOP)

- Including refueling, startup, shutdown and power operation
 - Limiting condition for operation (LCO),
 - Components control
 - Check the plant status
- GOP analysis → Operating blocks

FIRST IN CHANGE

NSAPHE Framework of autonomous operation

✤ General operating procedure (GOP)

- GOP analysis → Block operation
- Operating blocks have own entry and terminal conditions
- Algorithms can be either reinforcement learning or rule-based logic

RCS pressure and temperature must be maintained within the limitation curve.

→ A.I. agent (complicated)

Energize all pressurizer heater groups and start increasing the pressurizer temperature. \rightarrow **Rule-based logic** (simple)

SAPHE Framework of autonomous operation

Framework of autonomous operation system for NPPs

NSAPHE

Framework of autonomous operation

1. Supervisory operation module (1st level)

- Input: states from an NPP environment
- Monitoring NPP status based on RCS temperature and pressure
- Activation of operating blocks in the 2nd level

2. System operation modules (2nd level)

- Module for system and component operation
- Blocks including AI or rule-based algorithm
- Output: actions

3. Action selection (1st level)

- Collect action candidates
- If there is a conflict, the final action set is selected based on criteria

NPP environment

***** NPP to training environment

- Define an NPP as an environment where agents can interact with
- State, action, reward, state transition probability, discount factor

NPP environment

- * Training environment (Compact Nuclear Simulator, 993MWe WH 3-loop PWR)
- State: physical features representing an NPP status
 - RCS temperature, PZR pressure, PZR level, ...
- Action: controllable components
 - Valves, pumps, PZR heater, ...

Advantage Actor-Critic (A2C) algorithm

- One of policy gradient algorithms
- Actor determines action
 - Output shape: [action size]
 - Action selected stochastically
- Critic evaluates state value
 - Output shape: [1,]
 - Advantage \rightarrow Actor

Exploration vs. Exploitation

- RL agent can undergo enormous pathways for episodes
- Exploitation sticks to the best decision based on current information
- Exploration tends to take more pathways
- Exploration and exploitation are trade-off relationship

Actions taken by different agents

Pressurizer pressure control

Parameter	Unit
PZR pressure	kg/cm ²
RCS temperature	°C
FV122 status	-
HV142 status	-
Trend value	kg/cm ²

Action list (total 5 actions)

No action

FV122 Close for 2 seconds (-1.5%)

FV122 Open for 2 seconds (+1.5%) HV142 Close for 2 seconds (-1.5%)

HV142 Open for 2 seconds (+1.5%)

FV122 Close & HV142 Close for 2 seconds

FV122 Close & HV142 Open for 2 seconds

FV122 Open & HV142 Close for 2 seconds

FV122 Open & HV142 Open for 2 seconds

CVCS: Chemical Volume Control System RHR: Residual Heat Removal system PZR: Pressurizer

Pressurizer pressure control

- Reward function is designed to get a positive reward as PZR pressure approaches to the target value
- The agent gets a negative reward if PZR pressure moves away from the target value
- The agent gets large penalty if the episode ends up early

 $R = \begin{cases} 0.5 * (BC_u - BC_d) - (abs(P_t - P_c)) \\ (-1) * (step_{max} - step_c) (if done) \end{cases}$

 BC_u : upper boundary condition BC_d : lower boundary condition P_t : target pressure P_c : current pressure

Names	Values
Target value	25 kg/cm ²
Terminal condition	$20 \sim 30 \text{ kg/cm}^2$
Actor layers	3 (24 hidden nodes)
Actor activation function	Softmax
Critic layers	3 (24 hidden nodes)
Critic activation functions	Relu
Learning rate	0.001
Max episodes	(1) 500 (2) 2000
Max time step	(1) 300 (2) 3,500
Discounting factor	0.99

UDIST

- The results of pre-training were outside the target range
- After 300 pre-training, the agent restarted longer episodes (2000)
- The final agent successfully controls PZR pressure staying the target range

- When we checked the last episode, PZR pressure successfully stayed in the target area and scored high
- The charging water flow control valve was closed, and operation is performed only with the letdown water flow control valve.

- When we checked the last episode, PZR pressure successfully stayed in the target area and scored high
- The charging water flow control valve was closed, and operation is performed only with the letdown water flow control valve.

SAPHE Application

- Combined operating blocks for startup operation
- Solid phase (before bubble creation)
 - FV122, HV142 control PZR pressure

SAPHE Application

PZR bubble creation - success

SAPHE Summary

- 1. When considering the characteristics of startup/shutdown operation, it is advantageous to implement autonomous operation system using reinforcement learning.
- 2. Framework of autonomous operation system consisting of two modules
 - Monitoring an NPP status and activating necessary blocks
 - Operating blocks for system and component operation
 - Priority among outputs from the second level
- 3. After building a training environment using an NPP simulator, feasibility study was conducted using actor-critic algorithm.
- 4. Re-exploration of the pre-trained agent led to successful learning.
- 5. As an application, PZR bubble creation operation was implemented by integrating operating blocks.

SAPHE Future work

- Application: training more operating blocks
 - Increase the number of A.I. blocks
 - Expand operating section of the integrated model
- When expanding an operating range, there may be conflicting actions in the supervisory module
- Future work is about preparing for possible action conflicts in supervisory operation module

THANK YOU

