2020 Korean Nuclear Society Autumn Meeting

Heat Load Estimation of the Cryomodule for 200 MeV Energy Upgrade at KOMAC

December, 2020

Hyeok-Jung Kwon, Han-Sung Kim, Jeong-Jeung Dang, Seunghyun Lee, Yong-Sub Cho Korea Atomic Energy Research Institute

Korea Multi-Purpose Accelerator Complex

양성자가속기 기반 반도체 대기 / 우주 방사선 영향 평가 제품

• 우주 / 대기 방사선 환경

- □ 우주 방사선 환경
 - Proton: 1~500 MeV, 10³ ~ 10⁹ p/cm²/s, SEE
 - Heavy ion: (He~Fe), multi GeV/n, 10⁵ ions/cm²/s
- □ 대기 방사선 환경 (Neutron flux at atmosphere with energy >10 MeV)
 - 6000 n/cm²/hr (@ 12 km high)
 - 20 n/cm²/hr (@ sea level)
- 최근 반도체의 고 집적화로 인해 위의 대기 / 우주 방사선에 의한 반도체 영향평가가 중요해짐
 - □ 반도체에의 영향
 - Single Event Effect, Total Ionizing Dose, Displacement Damage
 - □ 반도체의 우주 / 대기 방사선 영향시험 국제기준
 - JEDEC JESD 89A: 14 MeV neutron, 50~60MeV proton, 90~100MeV proton, min. 200 MeV proton
 - ESA ESCC 25100: 20~200 MeV proton
 - 200 MeV 양성자를 이용하여 중성자를 발생시키는 경우 대기 방사선 스펙트럼의 90%이상을 구현할 수 있음

• 200 MeV 양성자가속기 - 반도체 영향평가 전용시설로 적합 1

200-MeV Energy Upgrade

● 200-MeV 에너지

- 대기 방사선의 90% 이상을 cover 할 수 있음
- 국제 시험 기준을 만족하는 전용 시설로 구축 가능
- 단일 구조의 초전도 가속기 사용 가능 (200-MeV 이상에서는 elliptical cavity + klystron 이 유리함)
- 기존 100-MeV 가속기 터널을 대규모 증축하지 않고 가속기를 설치할 수 있음

HWR Design Parameters

- Frequency: 350 MHz
- Beam energy: 100 MeV ~ 200 MeV
- Peak current: 20 mA
- RF duty: 10%
- Length: ~45 m
- Optimum beta: 0.56
- Eacc: 7.5 MV/m (Ep< 35 MV/m, Bp < 70mT)
- Operation temperature: 2 K
- HWR per CM: 4 HWRs / cryomodule
- Total no. of CM: 9 sets
- Total no. of HWR: 36 sets
- Focusing: Normal conducting doublet

HWR Cavity Design

KAERI Korea Atomic Energy Research Institute

Parameter	Unit	Value
Optimum beta (β _{opt})	-	0.56
V _{acc} (@β _{opt})	MV	3.61
E _{acc} (@β _{opt})	MV/m	7.53
E _{pk}	MV/m	29.08
B _{pk}	mT	61.66
E _{pk} / E _{acc}	-	3.86
B _{pk} / E _{acc}	mT/(MV/m)	8.19
V ₀	MV	4.14
Eo	MV/m	8.63
R/Q (@β _{opt})	Ohm	256.6
G	Ohm	116.1
Q ₀ (@Rs=20 nΩ)	-	5.81E+9
Cavity loss (@R _s =20 nΩ)	W	8.75
Stored energy	J	23.1
Cavity diameter	m	0.45

풍부한 에너지 깨끗한 환경 건강한 삶

HWR Cryomodule

- Concept: Use well proven technology
- Cylindrical cryomodule (based on SNS CM)
 - Cavity dimension: height ~ diameter
 - Focusing: External normal conducting doublet
 - Widely used in large facilities (ex. CEBAF, SNS, ESS and so on)
- HWR operating temperature: 2 K
- HWR cavities / cryomodule: 4
- HWR fixing and alignment: Space frame

Cryomodule

Static Heat Load - Radiation

Korea Multi-purpose Accelerator Complex 양성자가속기연구센터

Worst case in radiation heat transfer*

300 K -> 50 K: 2.5 W/m², 50 K -> 2 K: 94 mW/m²

G. Weisend H. Cryostat Design, Springer, 2016

풍부한 에너지 깨끗한 환경 건강한 삶

Static Heat Load - Conduction

K O M A C Korea Multi-purpose Accelerator Complex 양성자가속기연구센터

$$\overline{k}(T1,T2) = \overline{k}(0,T2) - \overline{k}(0,T1)$$

For example, stainless steel

 \overline{k} (2,300) = 3,000 - 0.09 = 3,000 [W/m] \overline{k} (2,50) = 120 - 0.09 = 120 [W/m] \overline{k} (50,300) = 3,000 - 120 = 2,880 [W/m]

- In general, a pressure of 10⁻⁶ mbar or less is sufficient vacuum to eliminate all convective heat transfer
 - The cold wall of the vacuum space acts as a cryopump for residual gas
 - But need another pump to reduce the pressure near 10⁻⁶ mbar prior to cool down the cryostat

* G. Weisend H. Cryostat Design, Springer, 2016

8

Dynamic Heat Load at Cavity

 $P_{c} = \frac{E_{acc}^{2} d^{2}}{O_{0}} \frac{1}{R/O} DF = \frac{V_{acc}^{2}}{O_{0} R/O} DF$

Vacc = 3.61 MV R/Q = 256.6 ohm Q0 = 5.81E9

Pc = 8.74 W / cavity @ 100% duty Pc = 0.874 W / cavity @ 10% duty

Pc = 3.5 W / cryomodule @ 10% duty

Heat Load per Cryomodule

KOMAC HWR Cryomodule heat load (200708)

	SNS Medi	um		SNS High			KOMAC		
Slot length [m]	5,820	uni		7 801			KOWAC		
CM length [m]	4 230			6 2 9 1			3 5 8 2		
CM diameter (OD) [m]	1.23			1.22			1 15/		
CM outer surface are [m2]	19 595			26.450			15.079		
Conversion factor from SNS to KOMAC	10.505			20.450			0.011		
Conversion racion normans to KONIAC							0.011		
Calculated heat load									
Calculated fleat load	05/	211/	FOR	Ob	211	5.04	05/	2.14	504
Charlie DAG	Q(y 1	2.IK	121.0	Q(y 1	2.IK 11E	161.0	Q(y 1	2. IK	142 G
Statuc [VV]	1	9.7	24.0	1	10.0	20.0	1	10.0	24.0
	1	0.0	24.0	1	17.1	50.0	1	0.0	24.0
Total boat load per CM M/I	1	20.0	155.0	· ·	20.6	101.0		0.1	167.6
Pudant and CM		20.0	133.0		30.0	200.0		29.1	107.0
Budget per CM		39.0	170.0		48.0	200.0		30.2	1/0.0
						1	20		10
Dynamic contribution							3U	VV .	
	2	6.0		4	140		4	-	
Cavity	3	0.0		4	14.0		4	/	
Pollour	3	0.0		4	0.8		4	0.0	
Bellows	2	0.2		3	0.3		3	0.3	
	3	1.5		4	17.1		0	01	
iotai dynamic		8.3			17.1			8.1	
Static contributions									
Radiation - HV & Bellows	3	1.1	41.7	4	1.8	65.3	4	1.00	37.75
Power coupler (radiation)	3	2.1		4	2.8		4	2.80	
Tuner	3	0.75		4	1		4	1.00	
He vessel Supports	3	0.2	18	4	0.3	24	4	0.27	24.00
Warm Beam Tube Conduction	2	0.1	2	2	0.1	2.5	2	0.54	12.97
Warm Beam Tube Radiation	2	0.9	0.9	2	0.9	0.9	2	0.90	0.90
Cables (3 per cavity)	1	0.5	1.8	1	0.5	1.8	1	0.50	1.80
Sub total CM		5.65	64.4		7.4	94.5	5	7.01	77.42
Supply Bayonets	2	1	12	2	1	12	2	1	12
Radiaton	1	0.04	9	1	0.04	9		0.04	9
PC JT Valve	1	0.25	2	1	0.25	2	2	0.25	2
Subcooler JT Valve	1	0.25	2	1	0.25	2	2	0.25	2
Shield Relief	2	0	4	2	0	4	L .	0	4
5K Transfer Line	1	0.1	0	1	0.1	0	0	0.1	0
50K Transfer Line	1	0	3	1	0	3		0	3
Sub total Supply Bayonets		1.64	32		1.64	32	2	1.64	32
Return Bayonets	2	1.5	6	2	1.5	6	ò	1.5	6
Radiation	1	0.1	11.2	1	0.1	11.2	2	0.1	11.2
Cooldown / PC Return	1	0.25	10	1	0.25	10	0	0.25	10
Shield Relief	1	0.3	2	1	0.3	2		0.3	2
Cooldown Valve	1	0.25	2	1	0.25	2	2	0.25	2
5K Transfer Line	1	0	0	1	0	0		0	0
50K Transfer Line	1	0	3	1	0	- 3		0	3
Sub total Return Bayonets		2.4	34.2		2.4	34.2	2	2.4	34.2
Tatal statio		0.00	100.0		11.44	1.00.7		11.0	440.0

130 W / CM @ 4.5 K equivalent

한국원자력연구원 Korea Atomic Energy Research Institute

풍부한 에너지 깨끗한 환경 건강한 삶

Energy upgrade of existing 100 MeV proton linac

- Space / Atmospheric radiation test facility on semiconductor with 200 MeV proton linac
- HWR based superconducting linac
- Cryomodule heat load estimation
 - Static: radiation, conduction
 - Dynamic: cavity
 - Total heat load: 130 W / CM @ 4.5 K equivalent

