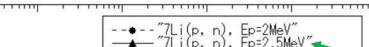
Preliminary Design of a Multi-purpose Compact Accelerator-driven Neutron Source


Doo-Hee Chang ^{a*}, Jong Gab Jo^a, Tae-Seong Kim^a, Yong-Sub Cho^a, Dae-Sik Chang^a, Hyeok-Jung Kwon^b, Han-Sung Kim^b

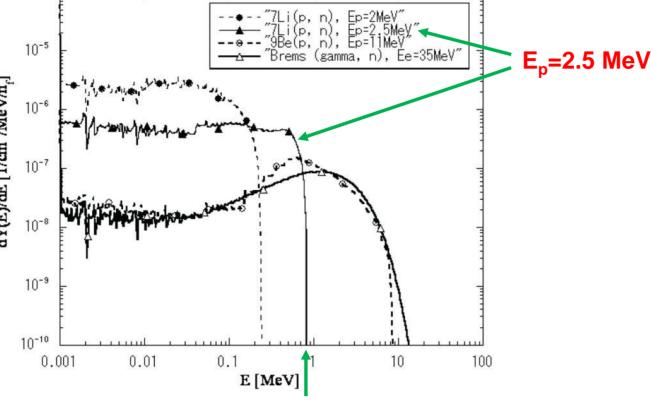
^aNuclear Physics Application Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea ^bKorea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju 38180, Korea *Corresponding author: doochang@kaeri.re.kr

Introduction

- A MuCANS (Multi-purpose Compact Accelerator-driven Neutron Source) device in the **KAERI (proposed)**
- A portable and compact proton LINAC-based high-energy neutron source
- Target neutron yield: ~10¹³ n/s (~10⁶ n/cm²·s at a distance position of 1 m)
- Nuclear reaction: ⁷Li(p,n)⁷Be (with Solid-state- or Liquid-Li target)
- Final proton beam: 2.5 MeV/10 mA (25 kW)
- Common Nuclear Reactions & Neutron Energy Spectra

Q Value Energy

RFQ (Radiofrequency Quadrupole)


Table. 2. Main parameters of worldwide RFQs

Parameters	SNS	J-PARC	LINAC4	CSNS	KOMAC
Frequency	402.5MHz	324.0MHz	352.2MHz	324.0MHz	350.0MHz
Input / Output Energy	65keV / 2.5MeV	50keV / 3.0MeV	45keV / 3.0MeV	50keV / 3.0MeV	50keV / 3.0MeV
Peak current	38mA	50mA	70mA	40mA	20mA
Total length	3.76m	3.62m	3.06m	3.60m	3.25m
Kilpatrick	1.85	1.72	1.84	1.78	1.80
Emittance	0.21 pi mm-mrad	0.27 pi mm- mrad	0.25 pi mm- mrad	0.22 pi mm- mrad	0.22 pi mm- mrad
Duty factor	6%	3%	10%	1.05%	24%

Fig. 4. An RFQ for the KOMAC in KAERI

Reaction	Shorthand	[MeV]	[MeV]	[M	eV]
$^{2}H + ^{2}H \rightarrow ^{3}He + n$	² H(d,n) ³ He	+3.269	NA	³ He: 0.82	n: 2.45 *
$^{2}\text{H} + {}^{3}\text{H} \rightarrow {}^{4}\text{He} + n$	³ H(d,n) ⁴ He	+17.589	NA	⁴ He: 3.54	n: 14.05
$^{1}\text{H} + ^{7}\text{Li} \rightarrow ^{7}\text{Be} + n$	$^{7}\text{Li}(p,n)^{7}\text{Be}^{\dagger}$	-1.644	1.880	⁷ Be: 0.21	n: 0.03
	$^{1}\text{H}(^{7}\text{Li},n)^{7}\text{Be}^{\dagger}$	-1.644	13.094	⁷ Be: 10.0	n: 1.44
$^{2}\text{H} + ^{7}\text{Li} \rightarrow ^{8}\text{Be} + n$	⁷ Li(d,n) ⁸ Be	+15.031	NA	⁸ Be: 1.68	n: 13.35
$^{1}\text{H} + ^{9}\text{Be} \rightarrow ^{9}\text{B} + n$	⁹ Be(p,n) ⁹ B	-1.850	2.057	⁹ B: 0.18	n: 0.023
$^{2}\text{H} + ^{9}\text{Be} \rightarrow ^{10}\text{Be} + n$	⁹ Be(d,n) ¹⁰ B	+4.361	NA	¹⁰ B: 0.40	n: 3.96

~0.8 MeV

Neutron Source Characteristics & Neutron Applications

Reactions	Neutron Yield	Neutron Production*	Heat Release (MeV/n)	Remarks	neutron	conversion
Spallation	17-27n/p	10 ¹⁴ (n/s/cm ²)	30-55	Expensive, complex, adamant usage	n fast enithermal thermal	
Fission	1 n/fission	10 ¹³ -10 ¹⁵ (n/s/cm ²)	180	Expensive, complex, adamant usage	Tast epithermai thermai	cold very-cold ultra
Giant laser inertial fusion	1 n/D-T pair	> 10 ¹⁶ (n/s/cm ²)	Re-stockable D-T pellets	Unattainable?		OK 1K 0.1K 0.01K 1mK 1
⁹ Be(D,n)¹⁰Be ⁹ Be(p,xn)	1 n/D 5x10 ⁻³ n/p	10 ¹³ -10 ¹⁵ (n/s/cm ²)	1000 2000	Moderate cost, flexible operation, multipurpose		inm 10nm 100nm attering interference conf
Photonuclear e- bremsstrahlung	5x10 ⁻² n/e	10 ¹³ (n/s/mA)	2000	Moderate cost, flexible operation, multipurpose	(n,2n), (n,γ) diffraction	
Neutron Generators (D,D) (D,T)	10 ⁷ -10 ⁸ n/µC	10 ⁸ -10 ¹⁰ (n/s)	3500-10000	Transportable, affordable for tailored commercial applications, need higher flux	RI productionReactor EngineeringMaterialNuclear Transmutation DopingFundamental Physics	Research Fundamental Phy
Table-top-laser photonuclear	10 ⁶ -10 ⁸ n/J	10 ⁸ -10 ¹⁰ (per shot)	Ultra-short pulsed lasers	Many debris, neutronics not yet matured	Boron Neutron Capture Therapy Radiography	
Neutristors solid-state, (D,D) chips	?	?	?	~\$2000, tiny, implantable medically, to be developed	Production Rate Flux	Conversion Effici

I. Main Components of the MuCANS Device

Characteristics of the MuCANS Device

• Operating Requirements: Steady-state long-pulse operation & Duty-cycle of > 50%

Shielding Structures

Fig. 5. Solid-state Li-Target of the BINP (Russia) $(E_p = 1.9 \sim 2.5 \text{ MeV}, I_p = 10 \text{ mA CW})$

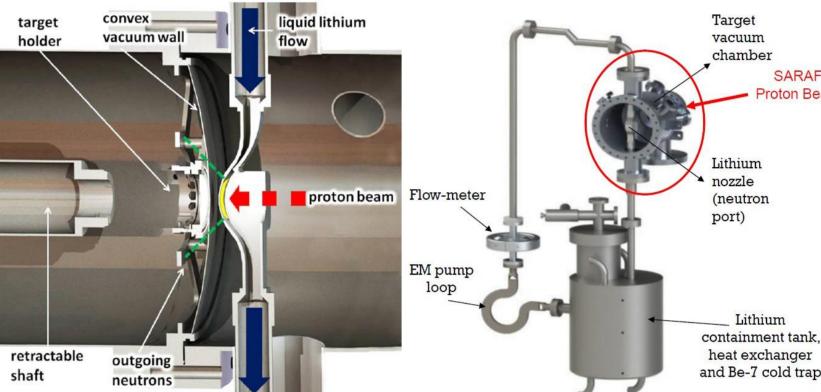


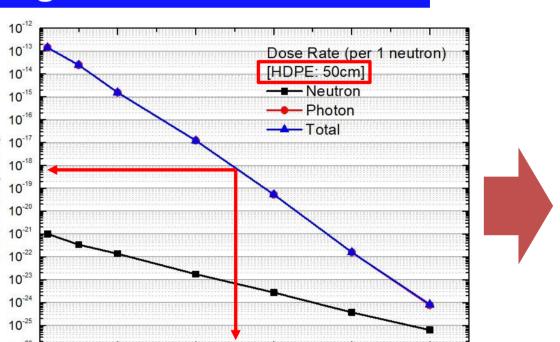
Fig. 6. Liquid Li-Target of the SARAF-I (Israel) $(E_p = 1.5 \sim 4 \text{ MeV}, I_p = 0.04 \sim 2 \text{ mA CW})$

장치가 설치되는

건물의 콘크리트

벽두께에 의해

Pb-두께를 줄일

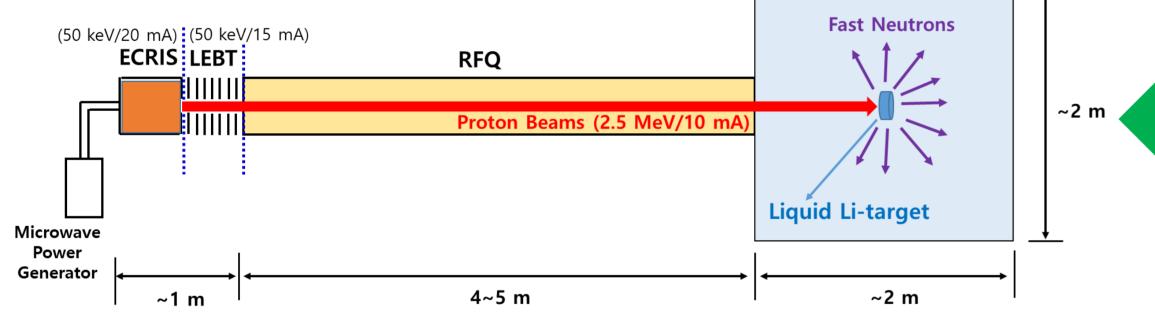

수 있음!

Neutron Shielding Structure

*Preliminary calculation by Dr. Do Heon Kim (KAERI)

- 타켓: ⁷Li(p,n)⁷Be
- 차폐 목표선량: 5µSv/hr
- 중성자원: point isotropic source, 0.4~0.8MeV (0.8MeV 가정)
- 고속중성자 수율: 1E+11, 1E+12, 1E+13, 1E+14, 1E+15
- 차폐체: HDPE for neutron, Pb for photon
- 중성자 수율에 따른 Tally 요건

MCNP Tallys Needed:	5.00E-17	Sv/hr for	1.00E+11	n yields
	5.00E-18		1.00E+12	
	5.00E-19		1.00E+13	
	5.00E-20		1.00E+14	
	5.00E-21		1.00E+15	



²⁰ 25 cm

Thickness of Pb (cn

The second

A Shielding Structure (example)

Fig. 1. Conceptual schematics of the MuCANS device

ECRIS (ECR Ion Source)

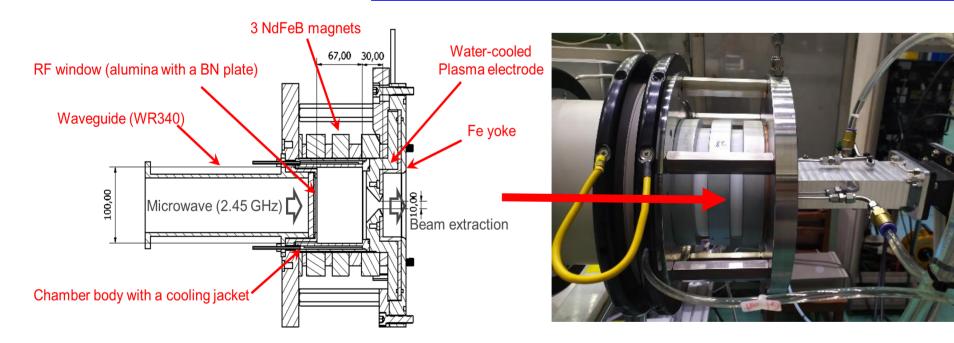


Fig. 2. A prototype ECRIS developed in KAERI for the compact D-D neutron generators

Table.	1.	Main	parameters	of	ECRIS
--------	----	------	------------	----	-------

-		
ECRIS	Target Value	
ECR frequency/power [GHz/kW]	2.45 / 2.0	
Working gas	H_2 (or D_2)	
Plasma density [cm ⁻³]	~1011	
Operating pressure [mbar]	$\sim 10^{5}$	
Beam energy/current [keV/mA]	50 / 20	
Aperture diameter [mm]	5	
Proton fraction [%]	~ 90	
Species ratio of H_2^+ & H_3^+ [%]	~ 10	
Beam emittance (1 or RMS norm)	0.1	
[π ·mm·mrad]	~ 0.1	

Fig. 7. Conceptual Structures of a Portable MuCANS System

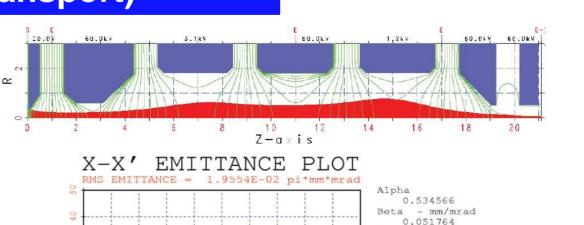
III. Model & Reference Devices

Table. 3. Main parameters of RANS-2 (Japan)

Table 4. Main parameters of LANSAR-PL4 (USA)

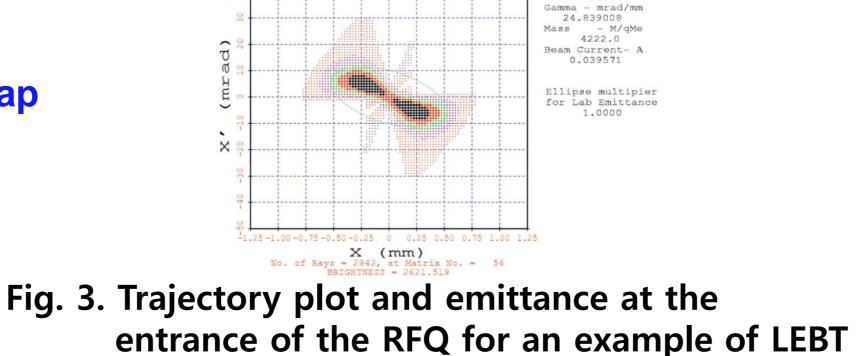
RANS2	Target Value	
Accelerated particle	p^+	일본의
Beam energy [nominal, MeV]	2.49 🗲	· 방사선안전
Beam current [µA]	100	규제에 의해 경제되
Beam duration [µsec]	\leq 1,100	결정됨
Pulse repetition rate [Hz]	10~180	
Neutron production reaction	$^{7}\text{Li}(p, n)^{7}\text{Be}$	
Maximum target yield $[n/sec/4\pi]$	~1012	
Maximum thermal flux	1.65E10 ⁵	
[n/cm2/sec at 1m distance position]	1.05E10	
Accelerator length [m]	< 5	
Accelerator weight [ton]	3	
Target & Shield weight [ton]	< 0.7	
Accelerator type	LEBT + RFQ	

LANSAR-PL4	Target Value
Accelerated particle	\mathbf{p}^+
Beam energy [nominal, MeV]	3.9
Neutron yield [n/sec/µA]	1.3E10 ⁹
Beam current/pulse [mA]	40
Beam pulse width [µsec]	25~215
Pulse repetition rate [Hz]	1~120
Neutron production reaction	${}^{9}\text{Be}(p,n){}^{9}\text{B}$
Maximum target yield [n/sec/4 π]	1.3E10 ¹²
Maximum thermal flux [n/cm2/sec]	2.6E10 ¹⁰
Accelerator length [m]	4.2
Accelerator weight [ton]	3
Accelerator type	LEBT + RFQ



Korea Atomic Energy

Research Institute


LEBT (Low Energy Beam Transport)

- Operating Requirements
- Transverse normalized RMS emittance
- $< 0.3 \pi$ mm·mrad
- (with a target value of 0.25π mm-mrad)

Conclusions

- Maximum beam loss < 25% (same as a beam current of 5 mA) - Total 6 electrodes with one extraction gap & two Einzel lens (preliminarily)

• A portable (and movable) MuCANS (Multi-purpose Compact Accelerator-driven Neutron **Source)** device is designed preliminarily in KAERI - LINAC-based high-energy neutron source - Multi-purpose applications with the high-energy neutrons • Detailed (final) design will be decided by further studies in near future Beam energy/current of MuCANS device will be also extended up to 30~40 MeV/100 mA - Neutron irradiation test of structural materials for the future fusion & fast-breeder

KAERI

Korea Atomic Energy Research Institute,

reactors

989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, R. O. Korea