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APR1400 main steam line break (MSLB)                     postulated design base accident 

 As a result of  the accident, the heat removal by the secondary system is increases. 

 The RCS is excessively cooldown which may in turn increase in core reactivity.  

 As a result, departure from nucleate boiling (DNB) may occur, causing heat to buildup and the 
fuel temperature to increase which threatens the fuel integrity.  

 AI is used as an alternative data-driven approach to predict the plant response during MSLB 
accident given the underlying uncertainties. 

 The figure of  merit (FoM) in this study is the MDNBR. 
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- Explores the applicability of  Artificial Intelligence (AI) to predict the MDNBR during APR1400 

MSLB Accident.  

- To achieve it : 

- Develop BEPU model to provide a database of  the thermal hydraulic response to train an 
Artificial Intelligence (AI) algorithm.  

- AI model is used as an alternative approach that relies on data-driven models to provide a fast 
design tool that can predict the MDNBR in APR1400 MSLB Accident. 
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 The methodology adopted in this work involves three building blocks: 
 

1 

2 
3 • Thermal hydraulic Model 

• Uncertainty Quantification 

• AI Model 
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Thermal hydraulic model development 
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APR1400 Nodalization APR1400 MSLB Systems and Components 



Thermal hydraulic model development 
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AFWP:  Auxiliary Feedwater Pump 
RCP:  Reactor Coolant Pump 
SG:  Steam Generator 
MSIV:  Main Steam Isolation Valve 
MFIVs: Main Feedwater Isolation Valve 
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First Identifying input uncertainties  

Second Propagating these uncertainties through a 
computational model (MARS-KS) 

Third Performing statistical assessments on the 
resulting responses 
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Development of  
uncertainty quantification 

framework 

Uncertainty parameters 

1. Yang, Y., Yang, J., Deng, C., Ishii, M., Simulation and Uncertainty Analysis of Main Steam Line Break Accident on an Integral Test Facility. Annals of Nuclear Energy, 144, 107565 (2020). 
2. C. S. Lee, Y. K. Jin, S. W. Kim, C. J. Choi, S. Y. Lee, and J. T. Seo,, Best Estimate Evaluation of Steam Line Break Accident Using Uncertainty Quantification Method. Proceedings of the Korean Nuclear Society Autumn Meeting (2003). 
3. Castro González, Emilio & Avramova, Maria & Cuervo, D. & Herranz, Nuria., Thermal-Hydraulic Uncertainty Propagation in a Main Steam Line Break Scenario (2016). 
4. M. Avramova, C. Arenas, K. Ivanov, Extension of BEPU Methods to Sub-channel Thermal-Hydraulics and to Coupled Three-Dimensional Neutronics/ Thermal-Hydraulics Codes, OECD/CSNI Workshop, Barcelona (Spain) (2011). 

L U Mean SD
1 SIT Temprature Uniform 0.9 1.1 1 0.05
2 Core Decay Heat Uniform 0.9 1.1 1 0.05
3 Core Conductivity Uniform 0.9 1.1 1 0.05
4 Core Heat Capacity Uniform 0.9 1.5 1 0.15
5 Break Area Uniform 0.95 1.5 1 0.1375
6 Depressurization Valves Discharge Coefficient Uniform 0.8 1.2 1 0.1
7 Break Discharge Coefficient Uniform 0.6 1.4 1 0.2
8 Interphase heat transfer Coefficient Uniform 0.9 1.1 1 0.05
9 Single phase Heat transfer coefficient Uniform 0.9 1.1 1 0.05

10 Critical flow Discrete 50 53 1 0.75
11 AFW flow rate Uniform 500 800 1 75
12 MSIS setpoint Uniform 851 975 1 31
13 Initial PZR pressure  Uniform 2000 2325 1 81.25
14 Initial SG inventory  Uniform 0.35 0.982 1 0.158
15 Safety injection delay time Uniform 20 30 1 2.5
16 Initial PZR Liquid Volume Uniform 0.219 0.6 1 0.09525
17 Flow Rate Normal 0.01 1.01 1 0.25
18 Power Normal 0.15 1.15 1 0.25
19 Inlet Temperature Uniform 0.15 1.15 1 0.25
20 Subchannel Area Normal 0.05 1.05 1 0.25
21 Nucleate boiling heat transfer coefficient Normal 0.24 1.24 1 0.25
22 Interfacial drag coefficient (bubbly flow) Normal 0.32 1.32 1 0.25
23 Interfacial drag coefficient (droplet flow) Normal 0.26 1.26 1 0.25
24 Interfacial drag coefficient (film flow) Normal 0.36 1.36 1 0.25
25 Outlet water pressure Normal 0 0 1 0
26 Fuel pellet diameter Normal 0.92 1.08 1 0.04
27 Cladding thermal conductivity Normal 0.9985 1.0015 1 0.00075

Normalized
No Parameter Distribution 
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framework 
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Artificial Intelligence AI Model  
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Hyperparameters dictionary 



AI MODEL VALIDATION  
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mean_squared_error 0.004629
val_mean_squared_error 0.000832
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Actual MDNBR vs. Predicted MDNBR 

# Hyperparameters Search Boundary
1 Batch Size 4
2 Hidden Layer Neurons 64
3 Dropout Rate 0.6
4 Epochs 200
5 Optimizer SGD
6 Last Activation relu
7 Metric mean_squared_error
8 Loss Function mean_squared_error
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The results of  this research shows that APR1400 is robust enough to overcome MSLB 
accident.  
 
AI algorithm is capable of  predicting MDNBR of  APR1400 MSLB with very low error.  
 
Although the development of  the AI algorithm is time-consuming; but once developed, the 
prediction can be obtained much faster than conventional deterministic methods.  
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