BEPU Evaluation for APR1400 MSLB Accident using Artificial Intelligence

Salama Obaid Alketbi Abd El Rahman Abou El Ala Osama Alatawneh Muhammad Wazif and Aya Diab

Korean Nuclear Society (KNS)

2020 Fall Conference

Nuclear Safety and Thermal hydraulics Lab

Department of Nuclear Power Plant

KEPCO International Nuclear Graduate School

OUTLINES

- INTRODUCTION
- METHODOLOGY
- BEPU MODEL
- ARTIFICIAL INTELLIGENCE MODEL
- RESULTS AND ANALYSIS
- CONCLUSION

INTRODUCTION

APR1400 main steam line break (MSLB) _____ postulated design base accident

- As a result of the accident, the heat removal by the secondary system is increases.
- The RCS is excessively cooldown which may in turn increase in core reactivity.
- As a result, departure from nucleate boiling (DNB) may occur, causing heat to buildup and the fuel temperature to increase which threatens the fuel integrity.
- AI is used as an alternative data-driven approach to predict the plant response during MSLB accident given the underlying uncertainties.
- The figure of merit (FoM) in this study is the MDNBR.

GOAL AND OBJECTIVES

- Explores the applicability of Artificial Intelligence (AI) to predict the MDNBR during APR1400 MSLB Accident.
- To achieve it :
 - Develop BEPU model to provide a database of the thermal hydraulic response to train an Artificial Intelligence (AI) algorithm.
 - AI model is used as an alternative approach that relies on data-driven models to provide a fast design tool that can predict the MDNBR in APR1400 MSLB Accident.

APR1400 MSLB Systems and Components

BASE CASE VALIDATION - Steady State

Daramatar	Assumptions and Initial Conditions				
Farameter	DCD	MARS	Variance	%	
Initial core power level, MWt	4,062.66	4,062.66	-	0.0%	
Initial core inlet coolant temperature, (°K)	568.15	572.53	4.38	0.8%	
Initial core mass flow rate, kg /s	19,344.44	19,668.00	323.56	1.7%	
Initial pressurizer pressure, Mpa	16.04	16.40	0.36	2.3%	
Initial pressurizer water volume, m3	39.91	39.87	(0.04)	-0.1%	
Initial SG liquid inventory per SG, kg	124,113	125,820.00	1,707.00	1.4%	
Blowdown fluid	Saturated steam	Saturated steam	_	-	
Blowdown area for each steam line, m2	0.119	0.119	_	_	
Loss of offsite power	Not assumed	Not assumed	_		

Thermal hydraulic model development Core Power, % of Full Power Pressurizer Water Volume (m³) 102% of full power 150 200 Time (sec) =====DCD PZR Volume (m3) ——MARS PZR Volume (m3) -MARS Reactor Power % --- DCD Reactor Power % Time (sec) **BASE CASE VALIDATION - Transient** Wednesday, December 30, 2020

First	Identifying input uncertainties	
Second	Propagating these uncertainties through a computational model (MARS-KS)	Development of uncertainty
Third	Performing statistical assessments on the resulting responses	framework
-		Wednesday, December 30, 14

Uncertainty parameters

			Normalized			
No	Parameter	Distribution	L	U	Mean	SD
1	SIT Temprature	Uniform	0.9	1.1	1	0.05
2	Core Decay Heat	Uniform	0.9	1.1	1	0.05
3	Core Conductivity	Uniform	0.9	1.1	1	0.05
4	Core Heat Capacity	Uniform	0.9	1.5	1	0.15
5	Break Area	Uniform	0.95	1.5	1	0.1375
6	Depressurization Valves Discharge Coefficient	Uniform	0.8	1.2	1	0.1
7	Break Discharge Coefficient	Uniform	0.6	1.4	1	0.2
8	Interphase heat transfer Coefficient	Uniform	0.9	1.1	1	0.05
9	Single phase Heat transfer coefficient	Uniform	0.9	1.1	1	0.05
10	Critical flow	Discrete	50	53	1	0.75
11	AFW flow rate	Uniform	500	800	1	75
12	MSIS setpoint	Uniform	851	975	1	31
13	Initial PZR pressure	Uniform	2000	2325	1	81.25
14	Initial SG inventory	Uniform	0.35	0.982	1	0.158
15	Safety injection delay time	Uniform	20	30	1	2.5
16	Initial PZR Liquid Volume	Uniform	0.219	0.6	1	0.09525
17	Flow Rate	Normal	0.01	1.01	1	0.25
18	Power	Normal	0.15	1.15	1	0.25
19	Inlet Temperature	Uniform	0.15	1.15	1	0.25
20	Subchannel Area	Normal	0.05	1.05	1	0.25
21	Nucleate boiling heat transfer coefficient	Normal	0.24	1.24	1	0.25
22	Interfacial drag coefficient (bubbly flow)	Normal	0.32	1.32	1	0.25
23	Interfacial drag coefficient (droplet flow)	Normal	0.26	1.26	1	0.25
24	Interfacial drag coefficient (film flow)	Normal	0.36	1.36	1	0.25
25	Outlet water pressure	Normal	0	0	1	0
26	Fuel pellet diameter	Normal	0.92	1.08	1	0.04
27	Cladding thermal conductivity	Normal	0.9985	1.0015	1	0.00075

Development of uncertainty quantification framework

1. Yang, Y., Yang, J., Deng, C., Ishii, M., Simulation and Uncertainty Analysis of Main Steam Line Break Accident on an Integral Test Facility. Annals of Nuclear Energy, 144, 107565 (2020).

2. C. S. Lee, Y. K. Jin, S. W. Kim, C. J. Choi, S. Y. Lee, and J. T. Seo,, Best Estimate Evaluation of Steam Line Break Accident Using Uncertainty Quantification Method. Proceedings of the Korean Nuclear Society Autumn Meeting (2003).

3. Castro González, Emilio & Avramova, Maria & Cuervo, D. & Herranz, Nuria., Thermal-Hydraulic Uncertainty Propagation in a Main Steam Line Break Scenario (2016).

4. M. Avramova, C. Arenas, K. Ivanov, Extension of BEPU Methods to Sub-channel Thermal-Hydraulics and to Coupled Three-Dimensional Neutronics/ Thermal-Hydraulics Codes, OECD/CSNI Workshop, Barcelona (Spain) (2011).

Result of the uncertainty quantification framework

AI MODEL ARCHITECTURE

Hyperparameters dictionary

#	Hyperparameters	Search Boundary	
1	Batch Size	2,4	
2	Hidden Layer Neurons	32, 64	
3	Dropout Rate	0.6	
4	Epochs	200	
5	Optimizer	Adam, Nadam, RMSprop,SGD	
6	Last Activation	relu, linear	
7	Metric	mean_squared_error	
8	Loss Function	mean_squared_error	

AI MODEL VALIDATION

mean_squared_error	0.004629	
val_mean_squared_error	0.000832	

Wednesday, December 30, 2020

20

Results and Analysis

#	Hyperparameters	Search Boundary
1	Batch Size	4
2	Hidden Layer Neurons	64
3	Dropout Rate	0.6
4	Epochs	200
5	Optimizer	SGD
6	Last Activation	relu
7	Metric	mean_squared_error
8	Loss Function	mean_squared_error

3.0 2.8 Predicted value 5.5 2.2 2.2.0 2.2 2.4 2.6 2.8 3.0 Actual value

Actual MDNBR vs. Predicted MDNBR

Conclusion

- •The results of this research shows that APR1400 is robust enough to overcome MSLB accident.
- •AI algorithm is capable of predicting MDNBR of APR1400 MSLB with very low error.
- •Although the development of the AI algorithm is time-consuming; but once developed, the prediction can be obtained much faster than conventional deterministic methods.

22

References

- 1. Yang, Y., Yang, J., Deng, C., Ishii, M., Simulation and Uncertainty Analysis of Main Steam Line Break Accident on an Integral Test Facility. Annals of Nuclear Energy, 144, 107565 (2020).
- 2. C. S. Lee, Y. K. Jin, S. W. Kim, C. J. Choi, S. Y. Lee, and J. T. Seo, Best Estimate Evaluation of Steam Line Break Accident Using Uncertainty Quantification Method. Proceedings of the Korean Nuclear Society Autumn Meeting (2003).
- 3. Castro González, Emilio & Avramova, Maria & Cuervo, D. & Herranz, Nuria., Thermal-Hydraulic Uncertainty Propagation in a Main Steam Line Break Scenario (2016).
- 4. M. Avramova, C. Arenas, K. Ivanov, Extension of BEPU Methods to Sub-channel Thermal-Hydraulics and to Coupled Three-Dimensional Neutronics/ Thermal-Hydraulics Codes, OECD/CSNI Workshop, Barcelona (Spain) (2011).
- 5. Vinod, S. G., Babar, A., Kushwaha, H., Raj, V. V., Symptom Based Diagnostic System for Nuclear Power Plant Operations Using Artificial Neural Networks. Reliability Engineering & System Safety, 82(1), 33-40 (2003).
- 6. Fernandez, M. G., Tokuhiro, A., Welter, K., and; Wu, Q., Nuclear Energy System's Behavior and Decision-Making Using Machine Learning. Nuclear Engineering and Design, 324, 27-34 (2017).
- 7. Park, H. M., Lee, J. H., Kim, K. D., Wall Temperature Prediction at Critical Heat Flux Using a Machine Learning Model. Annals of Nuclear Energy, 141, 107334 (2020).

Thank You

24