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1. Introduction

A nuclear power plant (NPP) is a large-scale power 
generation system consisting of thousands of 
components. In an NPP, the exacerbation of an 
abnormal situation caused by a failure of a specific 
component or function can make a serious situation [1]. 
This situation can cause enormous property damage due 
to interruptions in power generation. In addition, it can 
cause environmental damage due to radioactive leakage 
in an NPP. Therefore, an NPP belongs to a critical 
safety system that must prevent accidents. An operator 
in an NPP quickly recognizes the problem and take 
action to mitigate this situation. However, the 
information on plant parameters that the operator must 
accept to judge the situation is vast. It is required a 
heavy workload to accept and accurately diagnose the 
kinds of more than 200 abnormal events in a short time. 

Recently, various artificial intelligence technologies 
are being applied to solve complex problems. In prior 
researches, several deep learning models have been 
developed to support an operator in diagnosing 
abnormal events. However, when the deep learning 
model is applied to the final event diagnosis of an NPP 
which is a critical safety system, the operator is 
dependent on this diagnostic system. In this case, the 
operator may not notice a failure of the model or his 
ability to recognize a situation may decrease [2-4].  

To solve this problem, in this study, the contribution 
of each parameter to the diagnosis of 10 NPP states in 
the convolutional neural network (CNN) model is 
calculated by two interpretation methods. Through 
model training, we validate how useful the parameters 
identified by two methods are for classifying the NPP 
state by the model. Finally, we propose to provide the 
operator with parameters that are the basis for judgment, 
that is, the process of diagnosing the state of the CNN 
model. 

2. Methods

In this study, the CNN model which can classify 10 
labels corresponding to each 10 NPP status with high 
accuracy was used. One test data for each label that the 
trained CNN model can classify correctly is given. 
When the CNN model classified the given test data, 
which features have high relevance or high contribution 
was calculated by two interpretation methods. It was 
finally validated that the model can learn 10 labels with 
only the parameters for each label selected through the 

calculated heatmap. The overall experimental algorithm 
for this study is as following figure 1. 

Fig. 1. Overall experimental algorithm 

2.1. Base CNN Model Training 

A CNN is a neural network that classifies images 
using patterns. Several convolutional layers are added 
in front of the existing dense layer. This convolutional 
layer extracts features about two-dimensional input. 
The extracted features are converted into one-
dimensional data in a flatten layer. Then it is used for 
classification in a dense layer. [5] 

In this study, a CNN model was used to diagnose 
abnormal conditions of an NPP. The training model 
hyperparameter is as follows. 

- Number of convolutional layer : 3 
- Kernel size of each convolutional layer : 3*3 
- Filter number of each convolutional layer : 16 
- Activation function of each convolutional layer: ReLU 
- Activation function of Fully connected layer : softmax 
- Optimizer : Adam (learning rate=0.01) 

The labels of data used for training are 1 normal state 
and 9 abnormal states of an NPP: steam generator tube 
leakage (SGTL), charging line break (CHRG), letdown 
line leakage (LTDN), loss of condenser vacuum (CDS), 
circulating water tube leakage (CWS), reactor coolant 
pump abnormality (RCP), main steam line break (MSS), 
low-pressure feedwater heater abnormality (LFW), 
high-pressure feedwater heater abnormality (HFH). 
They are produced by 3KEYMASTER NPP simulator 
of Western Services Corporation, 50 data for each label 
[6]. One data is expressed as two-dimensional input 
data of 944 human machine interface parameters for 60 



seconds. Figure 2 is the result of the CNN model 
trained for 100 epochs. The model classified 10 labels 
with a high performance of 99.33 % on the validation 
dataset. 

Fig. 2. Based CNN model accuracy 

2.2. Model Interpretation Methods 

When the above based CNN model classifies test 
data for 10 labels, relevance of each feature in the test 
data was calculated using the following two model 
interpretation methods. 

- Saliency Map [7] 

Saliency map explains the relevance of each feature 
by calculating the gradient of output to the input as 
following equation 1. 

 (1) 

Gradient values are used to express how a small 
difference in the input feature changes the output. In 
other words, the Saliency(x) with the input feature x, 
which has the most influence of the output, has the 
highest value. 

- Guided Gradient-weighted Class Activation 
Mapping (Guided Grad-CAM) [8] 

Filters included in the last convolutional layer of the 
trained CNN model have information on the main 
feature map for classifying labels. Grad-CAM 
calculates the contribution of a feature using the 
weights given to filters in this convolutional layer. This 
calculated contribution can be considered the kind of 
label relevance in this study. Equation 2 below 
represents the importance of A, the feature map k for 
class c. As a result, Grad-CAM is calculated as 
following equation 3. 

 (2) 

 (3) 

By multiplying this result and the result of Guided 
backpropagation, the resolution of a heatmap calculated 
by Grad-CAM can be increased. 

3. Results

3.1. Relevant Parameters 

Figure 3 below shows the heatmap expressing the 
relevance of each feature when the model classifies test 
data for the CDS label. They were calculated by 
Saliency map and Guided Grad-CAM. 

Fig. 3. Example of heatmap 

As result, the parameter corresponding to the column 
with the highest mean value for each contributed feature 
value is expected to contribute the most for the CNN 
model to classifying sample data as CDS label. In this 
way, 10 sample data are classified into each label, and 
the most relevant parameter is tracked as shown in the 
following table 1. 

Table. I: Relevant parameter name for each label 

Label 
Model explanation methods 

Saliency map Guided Grad-CAM 
Normal CONFV191 CVCTT216 
SGTL MFWTT129A SPDIT4 
CHRG CVCFT142A CVCLT149 
LTDN NBXIT6 CVCFT121 
CDS MGPTT17 TCS_15_B 
CWS SPDIT4 T701 
RCP RHRTT613 BDSTT73 
MSS CHSRT312 FPCFT80 
LFH CONPT25 T701 
HFH MFWST33 CCWLT2 

3.2. Relevance Validation 

Considering the overlapping parameter among the 10 
calculated parameters using each explanation method in 
section 3.1, Saliency map selected a total of 10 and 
Guided Grad-CAM selected a total of 9 parameters. 
Table 2 below shows results training simple CNN 
models according to the kind of parameters used for 
training data. 
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Table. II: Training results based on the training data 
Training data Training result 

Param. 
Type* 

Param. 
Num. 

Acc* Loss 
Val. 

Acc.* 
Val. 
Loss. 

HMI* 944 1.0000 0.0003 0.9933 0.0119 
Saliency 

map 
10 1.0000 0.0038 1 0.0052 

Guided 
Grad-
CAM 

9 1.0000 0.0253 0.96 0.0933 

* Param. Type: parameter type; Acc.: accuracy; Val.
Acc.: validation accuracy; HMI: human machine 
interface; 

As a result, it showed high performance even only 
using about 10 parameters tracked by Saliency map and 
Guided Grad-CAM. Also, it showed an accuracy close 
to 100% similar to the model training with 944 
parameter data. Through this, it can be validated that 
parameters with information that can classify 10 labels 
have a high relevance value. In other words, it can see 
that each method has well tracked the parameters 
relevant in classifying the test data with the correct label. 

4. Conclusions

In this study, we explained a CNN model that 
classifies 10 labels which are NPP states to track 
parameters that are the basis of the model classification. 
When the CNN model correctly classifies a total of 10 
test data for each label, relevance of each parameter was 
calculated by two model interpretation methods. Using 
only parameters with the highest relevance value for 
each label, the model was able to classify 10 labels with 
high accuracy. Through this, we validated that each 
method well selected the parameters that the model 
used to classify test data. 

When a deep learning model is applied as an operator 
support system, we can provide the operator with 
information on which parameters the model diagnosed 
the NPP state as the main reason. This allows the 
operator to once again consider whether the model 
diagnosis is reliable. The model can be interpreted in 
various ways, and the result of the diagnostic relevance 
can be different. To apply this approach, evaluation and 
comparison of various methods for interpreting the 
model will be needed in a future study. 
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