A Study on the Applicability of STPA Method to Digital I&C Design Assessment with Regard to Safety Requirements

Seung Ki Shin*, Sung-Min Shin, Sang Hun Lee, Inseok Jang

Korea Atomic Energy Research Institute

skshin@kaeri.re.kr

2020.12.17

CONTENTS

- 01 Introduction
- 02 Guidance on Safety Design Assessment
- **03** System-Theoretic Process Analysis
- 04 Applicability of STPA to Safety Design Assessments of Digital I&C Systems
- **05** Summary and Conclusion

Introduction

- Safety systems are designed to automatically perform the safety functions identified in the early design stage of a nuclear facility.
 - Safety systems should be designed in accordance with various regulatory requirements.
- As digital technologies are adopted in design of I&C systems, the failure mechanisms of I&C systems becomes more diverse and complicated.
 - It is necessary to carefully consider an effective way to assess the design of digital I&C systems with regard to reliability.
- In this study, it is investigated how to utilize the STPA method when evaluating the safety design of digital I&C systems according to associated regulatory guidance

Guidance on Safety Design Assessment

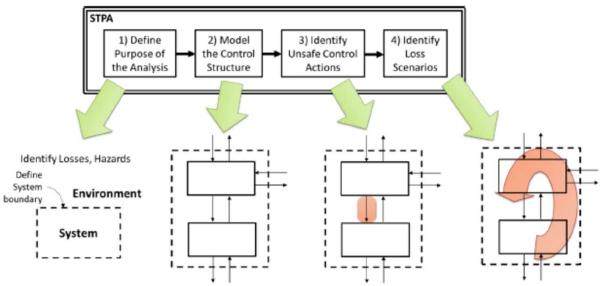
- IEEE Std. 603, IEEE Standard Criteria for Safety Systems for Nuclear Power Generating Stations
 - Establishes minimum functional and design criteria for the power, instrumentation, and control portions of nuclear power generating station safety systems
 - Provides various design requirements for safety systems such as singlefailure criterion, independence, and reliability

Guidance on Safety Design Assessment

- Safety system criteria on 'Reliability' in IEEE Std. 603
 - Appropriate analysis of the design should be performed to confirm the quantitative and qualitative reliability goals have been achieved.
 - The qualitative reliability analysis is performed to assess conformance of safety systems to applicable design criteria such as single-failure criterion, independence, and channel integrity.
 - Failure modes and effects analysis (FMEA)
 - Fault tree analysis
 - Reliability block diagrams
 - The quantitative reliability analysis is performed to establish initial periodic testing intervals for safety equipment and to provide a means for evaluating operational performance against requirements.
 - Mathematical modeling methods for reliability and availability estimation

Guidance on Safety Design Assessment

- Safety system criteria on 'Software CCF' in IEEE Std. 603
 - Engineering evaluation for software CCFs of digital safety systems should be performed including use of diverse means to accomplish the function that would otherwise be defeated by the CCF.
 - Diversity and defense-in-depth (D3) analysis should be performed to evaluate the digital I&C design against potential software CCFs of safety systems in accordance with NUREG-0800 BTP 7-19 and NUREG/CR-6303.


System-Theoretic Process Analysis

- The STPA is a hazard analysis method that is part of a relatively new set of safety engineering methods rooted in the theory of Systems-Theoretic Accident Model and Process (STAMP).
- In addition to component failures, STPA assumes that accidents can also be caused by unsafe interactions of system components, none of which may have failed.
 - The system is treated as a whole, not as the sum of its parts.

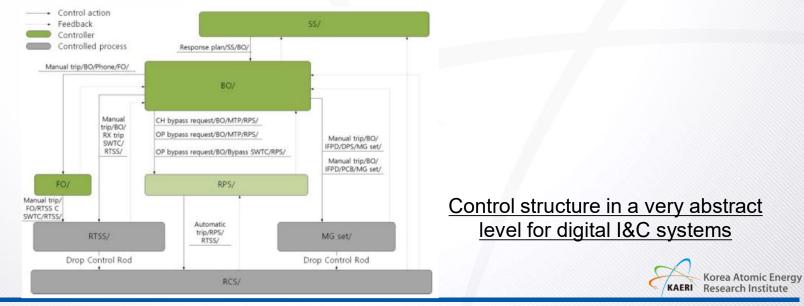
System-Theoretic Process Analysis

Overview of the basic STPA method

- ① To define purpose of the analysis
- 2 To build a model of the system called a control structure
- ③ To analyze control actions in the control structure to examine how they could lead to the losses defined in the first step
- ④ To identify the reasons why unsafe control might occur in the system

System-Theoretic Process Analysis

- Main advantages of STPA with regard to the safety design assessment of digital I&C systems
 - STPA can be started in early concept analysis to assist in identifying safety requirements and constraints.
 - STPA includes software and human operators in the analysis, ensuring that the hazard analysis includes all potential causal factors in losses.
 - STPA can be easily integrated into system engineering process.


Applicability of STPA to Safety Design Assessments to Digital I&C Systems

- Use of STPA in reliability analysis
 - The FMEA focuses on the independent failure of each hardware component, thus it is difficult to figure out the potential system failure caused by multiple components' failures or a software related failure.
 - Conventional methods such as the FMEA and fault tree analysis begin with decomposing a system into individual components.
 - The STPA can be utilized to address those failures as it finds all the causal scenarios leading to an identified loss.
 - The STPA considers the system behavior as a whole and unsafe interactions of components not failed can be captured as a loss scenario.
 - It can be expected that the STPA identifies causal scenarios of system failures that traditional methods cannot find.

Applicability of STPA to Safety Design Assessments to Digital I&C Systems

- The control structure built in the second step of the STPA can be utilized as one of resources for human reliability analysis (HRA).
 - In the detailed level of control structure, the signal interfaces between systems or components including the list of control and feedback signals are described including human operators.
 - It can be easily found which feedback signals are credible given that a certain component has failed.
 - The credible transmission path of a control signal from human operators can be discriminated in the control structure.

Applicability of STPA to Safety Design Assessments to Digital I&C Systems

- Use of STPA in D3 analysis
 - The control structure of STPA can be utilized to identify the potential vulnerabilities to a software CCF and verify whether the required safety functions of safety systems can be substituted by other systems unaffected by the CCF.
 - The control structure can be used as an important schematic diagram to check the compliance with guidelines of D3 analysis in NUREG/CR-6303.
 - Guideline 9 Output Signals
 - Guideline 12 Diversity Among Echelons of Defense
 - Guideline 13 Plant Monitoring
 - Guideline 14 Manual Operator Action

Summary and Conclusion

- In the licensing process, it is required to assess the design of I&C systems whether various safety requirements are met in I&C design using appropriate analysis approaches.
- As digital technologies are adopted in designing I&C systems, the signal interactions among components and the failure mechanisms become more complicated compared to analog-based systems.
 - To overcome the limitations of conventional approaches for safety design assessment of digital I&C systems, it is required to utilize an appropriate method to support the conventional methods.
- The STPA method can be utilized effectively with conventional methods for safety design assessments such as qualitative and quantitative reliability analysis and D3 analysis.
 - A well-modeled control structure is very useful for design assessment of digital I&C systems in many ways.

