Improvement and Evaluation for Henry-Fauske Critical Flow Model of SPACE code

BUMSOO YOUN (bsyoun81@khnp.co.kr)

Korea Hydro & Nuclear Power Central Research Institute (KHNP CRI)

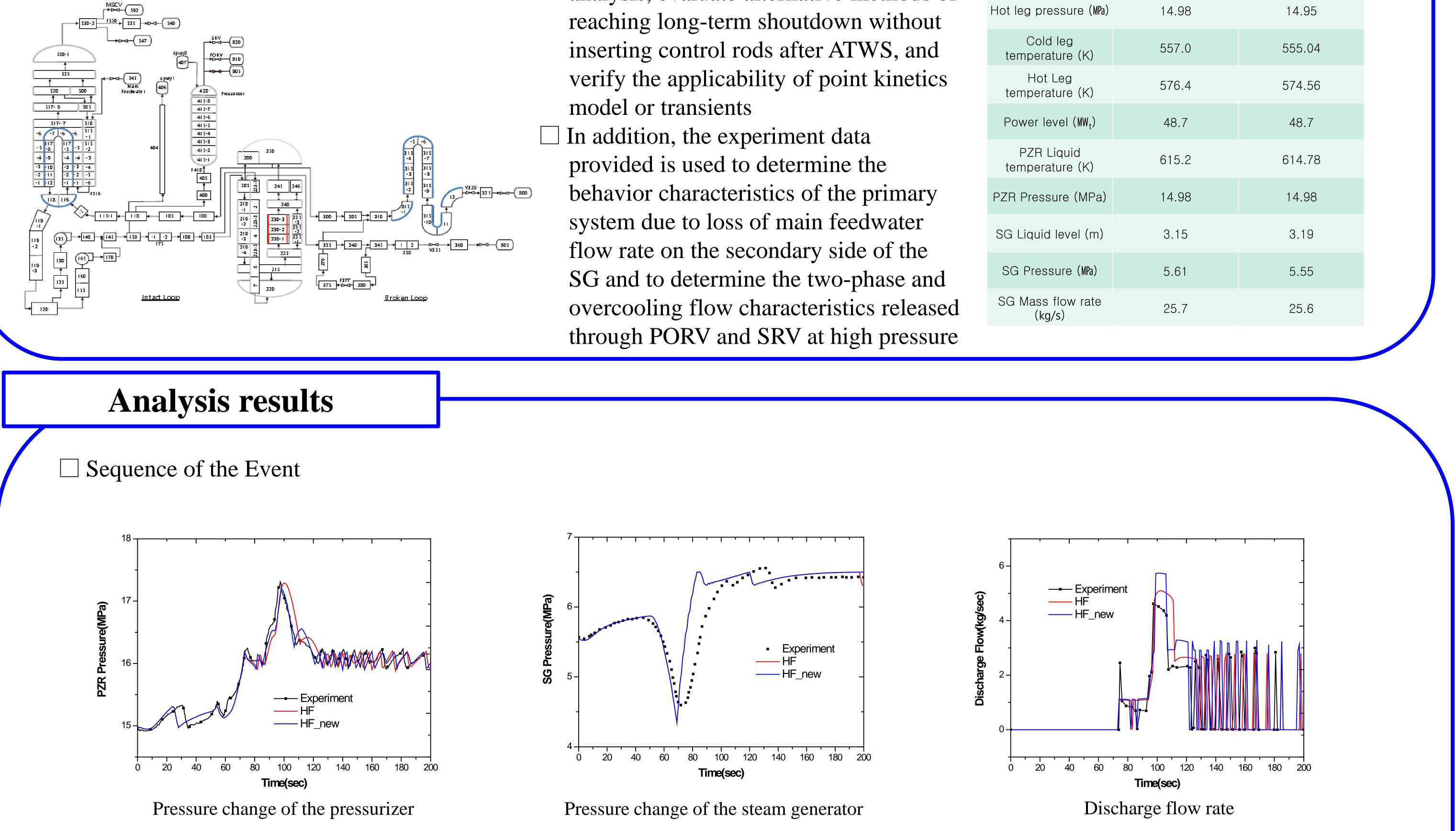
Introduction

The Henry-Fauske critical flow model applied to the **SPACE code does not predict the break flow conservatively** compared to the critical flow model of the RELAP5 code

The break flow rate is one of the highly important phenomena in accident analysis

The **SPACE code applies a counter current flow limiting(CCFL)** model to compensate for the non-conservatism of these critical flows

This causes a problem with **excessive calculation time**


To solve these problems, we add the same Henry-Fauske critical flow model as RELAP5 to the SPACE code

In this study, to verify this, we perform verification evaluations on LOFT L9-3 which is a representative integral effect test(IET).

Analysis method

The computer code used the SPACE 3.22

LOFT L9-3 Modeling

☐ The LOFT L9-3 experiment purpose is to provide experimental data to developers of analysis codes for ATWS analysis, evaluate alternative methods of

□ SPACE Steady State Analysis Results

	Experiment	SPACE
Mass flow rate (kg/s)	467.6	467.63
Hot leg pressure (MPa)	14.98	14.95
Cold leg temperature (K)	557.0	555.04
Hot Leg temperature (K)	576.4	574.56
Power level (MW_t)	48.7	48.7
PZR Liquid temperature (K)	615.2	614.78
PZR Pressure (MPa)	14.98	14.98
SG Liquid level (m)	3.15	3.19
SG Pressure (MPa)	5.61	5.55

An analysis of the Henry-Fauske critical flow model of existing SPACE code and the same conservative Henry-Fauske critical flow model as RELAP5 is performed on LOFT L9-3

As a results, the conservative Henry-Fauske critical flow model was evaluative to conservatively predict the critical flow rate than the previous Henry-Fauske critical flow model

□ A new Herny-Fauske critical flow model with RELAP5-level conservatism will be used in the future to develop SPACE methodologies for OPR1000-type and WH 3-loop type nuclear power plants

Korean Nuclear Society Spring Meeting, 2021