Vibration System Analysis of Radial Magnetic Bearing
e for MMR Condition
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5 KAIST-MMR (MMR, Micro modular Reactor) ‘s Advantages = Layout of the experiment loop

- MMR (fully modularized fast reactor with super critical CO,) has high power density with moderate heat The pump, chiller and heat exchanger are derived from the SCO,PE which is S-CO, pressurizing loop
source temperature. constructed in KAIST to control the thermal condition
- MMR can replace the diesel engine to avoid violating the newly released IMO regulation.
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A S-CO, power cycle demonstration facility (S-CO,PE)
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| : : The shaft trajectory data Is inserted to the developed fluid force analysis model. From this, the fluid force
4 Bearing options for S-CO, Brayton cycles exerted on the shaft during the experiments are estimated. The calculated results are used to verify the model.
with various power scales
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4 Configuration of MMR _x10°  Shaitusjectory
Magnetic bearing’s radial instability issue

Under high pressure & high speed operation | eaked working fluid cools the rotor
Shaft breakaways from the revolution orbit No such phenomenon with low density fluid

Lubrication force vs Eccentricity ratio based on developed model
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A Compressor shaft trajectory under air condition (left, 4 Cross-section of radial
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In this poster, the modeled S-CO, lubrication pressure distribution in the magnetic journal bearing geometry
with uniform circular motion Is analyzed with its physical properties. To explain and verify the results, the
experimental results with shaft position is substituted into the model for comparison. Also, the results are
analyzed with air gap’s position.

= Lubrication in magnetic bearing with inner coated geometry

Magnetic bearing’s electromagnet is exposed to the working fluid leaked through the labyrinth seal. Because
the complex geometry is difficult to model, smooth geometry is analyzed with model at first.
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Fluid force model with Reynolds equation

Thin film fluid dynamics equation

Velocity profile from Navier & Stokes equation

— Substitute to the continuity equation

Negligible axial direction & Quasi steady (perfect revolution)
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Purpose : Pressure distribution & force exerted to the shaft
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= Disturbance source
4 Bearing modeling coordinate description F, ;p has a period same as electromagnets array.

Fluid force model results for 30,000 RPM and, € (Eccentricity ratio) =0.08 The gaps between the electromagnets appear to cause the CO, flows that impede control.

Transient term
T

= Vibration system analysis
F,,5 and F,,., follow the trend of the 2" order system.

1| Insatbility source i ,I’} e
Magnetic bearing’s air gaps between the electromagnets appear b
to be the instability source
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High density of S-CO, can be the instability source of the »
magnetic bearing levitation
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e o o o o o o o o o P o P o o o B o o o o With A’s eigenvalue, the vibration system’s convergence can be predicted.

- High Density and its change is main reason of the fluid force gradient AMB?’s control strategy can be designed with desired eigenvalue.
- Control of thermal condition is required for experiment The effectiveness of it is planned to be tested with several control strategy




