Study on hydrous tin(IV) oxide adsorbent for a ⁸²Sr/⁸²Rb generator system Accelerator Yeong Su Ha*, Yeonji Lee Kye–Ryung Kim

KAERI

Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute

Introduction

- Despite remarkable medical advances in recent decades, cardiovascular disease remains as one of the most common causes of high morbidity and mortality worldwide
- an early diagnosis is of paramount importance
- \rightarrow . various imaging modalities have been developed & are increasingly used
- > to improve the diagnosis and prognostic classification of patients at risk of cardiovascular diseases including positron emission tomography
- Rubidium (Rb), an alkali metal ion
- acts biologically like potassium & accumulates in cardiac muscle tissue
- a rapid blood clearance profile

 \rightarrow allows the use of ⁸²Rb (β + emitter) with an ultra-short physical half-life of 75 sec for non-invasive evaluation of regional cardiac blood flow

- → ⁸²Rb can be produced from a generator system by the decay of its 25.5-day half-life parent ⁸²Sr
- Since no history of the use of ⁸²Rb radioisotope for research or medical purpose in Korea
- Korea multi-purpose accelerator complex (KOMAC) has plan to produce ⁸²Sr with certain purity & develop ⁸²Sr/⁸²Rb generator system
- > Here, we report the results on characteristic studies of adsorbent in the generator system.

Previous work

Tin(IV) oxide size (μm)	рΗ	Temperature (°C)	Adsorption yield of Sr (%)
250 ~ 500 (alpha + meta)	7	50	76.7 (6.92 μg/9.02 μg)
250 ~ 500 (alpha + meta)	8	50	76.6 (6.85 µg/8.94 µg)
125 ~ 250 (alpha + meta)	10	room temperature	74.5 (6.56 μg/8.81 μg)
250 ~ 500 (alpha + meta)	10	room temperature	64.2 (5.83 µg/9.08 µg)
no filtration (alpha + meta)	10	room temperature	58.6 (5.20 μg/8.87 μg)
75 ~ 150 (alpha)	10	room temperature	96.4 (7.23 μg/7.50 μg)
*Custom order (Keeling & Walkers)			

Comparison between meta- & alpha-form adsorbent

- The meta-form is more crystalline
 The alpha-form is acid soluble
- → higher ion-exchange yield of Sr (96.4%) in the pure alpha-form adsorbent - Total 9 times test was conducted : adsorption yield of Sr was $97.62 \pm 1.57\%$

Experiments and Results (Cold Model)

• Picture & size of ⁸²Sr/⁸²Rb generator column

• Procedure for the adsorption of ⁸²Sr into column

• Visual inspection & pH measurement of eluate

- Clear solution
- pH : 7.49 (neutral)
- → direct administration of ⁸²Rb into animal models or patients for medical purposes
- Elution yield of Rb as a function of flow rate
 607

- the adsorption of Sr into the generator column was $98.36 \pm 0.61\%$ (n = 7)
- no significant Sr breakthrough was observed by ICP-MS analysis of the elution solution from the generator column
- distribution coefficients (K_D) for the equilibration of Sr(II) and Rb(I) between hydrous tin oxide and 0.15 M NaCl solutions (pH 7.2)

→ the K_D value of Sr(II) : 47,000 ~ 58,000 → the corresponding K_D value of Rb(I) : 2.5 \pm 1

- the Rb elution yield varies between 4.79 and 55.74% for a flow rate between 3 and 10 mL/min

Conclusion & Future plan

Hydrous tin(IV) oxide in sodium cation form shows promise as a cation exchange adsorbent for a ⁸²Sr/⁸²Rb generator The prepared hydrous tin oxide adsorbent could be used for development of a ⁸²Sr/⁸²Rb generator

Acknowledgement: This work has been supported through KOMAC (Korea of Multi-purpose Accelerator Complex) operation fund of KAERI by MSIP (Ministry of Science, ICT and Future Planning)