Method of Separating Carrier-Free Ho-166 and Purification using Chromatography

Kanghyuk Choi*, Aran Kim

Radioisotope Research Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon, Republic of Korea

with cation-exchange resin and complexing agent.

new radioactive equilibrium.

Experiment and Results

Post-column reactions are based on spectrophotometric chromogenic complexing agent, the so-called post-column

 \rightarrow provides a variety of information including column

melting the irradiated target (Dy target). The second step is to collect n.c.a Ho-166 through the secondary column (CM2) separation after radioactive equilibrium is established. The obtained Ho mixture is subjected to washing process and drying to obtain carrier free Ho.

Conclusion

Energy (keV)

Post-column reaction system was introduced for real-time check the cold separation, and this systems provide a number of data for produce carrier-free RI.

225.0 Energy (keV)

- Post-column reaction system provides a lot of information while reducing radioactive waste.
- Carrier-free Ho-166 was obtained through column separation in two steps. The first step is to obtain the Dy-fraction after melting the irradiated target (Dy target), followed by a second separation after a time lap for new radioactive equilibrium.

