Estimation of Plutonium Production in a Graphite-moderated Reactor using Graphite Isotope Ratio Method and MCS

Kyeongwon Kim^a, Jinseok Han^b, Ran Lee^a, Hyun Chul Lee^{b*}, Junkyung Jang^b, Deokjung Lee^a

^aDepartment of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea ^bSchool of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea *Corresponding author: hyunchul.lee@pusan.ac.kr

Unist core

ABSTRACT

The international community, and especially the South Korean government, is making efforts to denuclearize the North Korea. If North Korea accepts a complete denuclearization, it would be essential to estimate the amount of plutonium produced by them. This estimation would help to determine the number of produced plutonium nuclear weapons, by that verifying the status of denuclearization. It is known that the North Korea is producing weapon-grade plutonium using a Magnox-type reactor. The amount of plutonium produced in a Magnox reactor can be estimated using a correlation between the ratio of impurity indicator isotopes and the generated plutonium. This paper presents an estimation of ²³⁹Pu production in a graphite-moderated nuclear reactor using a Graphite Isotope Ratio Method (GIRM) paired with our code MCS. In this study, the ratio of ¹⁰B/¹¹B isotopes was used as the impurity indicator. The total cumulative ²³⁹Pu production calculated by MCS and GIRM show a difference of 1.157% RMS on average, with the maximum and the minimum RMS of 3.306% and -1.250%, respectively.

INTRODUCTION

- It is assumed that North Korea is producing weapon-grade plutonium using a Magnox-type reactor.
- The amount of plutonium can be estimated using a correlation between the ratio of impurity indicator isotopes (¹⁰B/¹¹B) and the generated plutonium.
- An estimation of ²³⁹Pu production in a graphite-moderated nuclear reactor using a GIRM using our code MCS.
- MCS is a continuous-energy Monte Carlo code developed at the CORE Lab. of UNIST.

DESCRIPTION

- Magnox Reactor
 - Magnox reactor uses natural uranium as fuel, graphite as moderator and carbon dioxide (CO₂) gas as the heat exchange coolant.

Total cumulative ²³⁹Pu production calculated by MCS and GIRM

 Axial and pin-wise cumulative ²³⁹Pu production calculated by MCS and GIRM on depletion step of 3250 day

Heigh	nt [cm]	MCS	Estimated	Relative
Bottom	Тор	Total Cumulative ²³⁹ Pu [kg]		Error [%]
100	132	9.208	10.047	9.114
132	164	10.421	10.586	1.579
164	196	11.174	11.069	-0.946
196	228	11.682	11.496	-1.594
228	260	12.045	11.865	-1.487
260	292	12.301	12.178	-1.005
292	324	12.477	12.431	-0.370
324	356	12.607	12.625	0.142
356	388	12.681	12.759	0.612
388	420	12.719	12.832	0.884
420	452	12.725	12.843	0.921
452	484	12.689	12.791	0.808
484	516	12.606	12.676	0.560
516	548	12.485	12.497	0.097
548	580	12.309	12.253	-0.459
580	612	12.056	11.943	-0.944
612	644	11.691	11.566	-1.072
644	676	11.176	11.122	-0.484
676	708	10.423	10.609	1.784
708	740	9.209	10.028	8.891

Parar	neter	Value	Unit
Poy	wer	182	MW_{th}
Active	height	640	cm
Active c	liameter	945	cm
Fuel pi	n radius	1.4610	cm
Claddin	g radius	2.0400	cm
Coolant radius	Zone A	5.2080	cm
	Zone B	5.0165	
	Zone C	4.5847	

Flowchart of GIRM process

- ²³⁹Pu mass density for the ¹⁰B/¹¹B ratio is calculated for each depletion step using MCS 2D fuel pin simulation.
- ²³⁹Pu mass density is estimated using a corresponding 2D fuel pin ¹⁰B/¹¹B ratio for each

Fuel Pin	MCS	Estimated	Relative
Index	Total Cumulative ²³⁹ Pu [kg]		Error [%]
1	0.121	0.124	2.704
2	0.145	0.148	2.205
3	0.135	0.137	1.570
4	0.155	0.154	-0.468
5	0.157	0.155	-1.093
6	0.158	0.153	-3.385
7	0.144	0.146	1.350
8	0.158	0.154	-2.112
9	0.161	0.156	-2.940

sampling region of a 3D whole core simulation.

- A 3D space-dependent equation of ²³⁹Pu mass density for the whole core is derived through a least-squares regression using a ²³⁹Pu mass density for each sampling region.
- The total estimated ²³⁹Pu production is calculated by integrating the equation over the whole core 3D space.

CONCLUSIONS

- The total cumulative ²³⁹Pu production calculated by MCS and GIRM show a difference of 1.157%, with the maximum and the minimum of 3.306% and -1.250%.
- The space dependence of the ²³⁹Pu estimation was evaluated by comparing the cumulative ²³⁹Pu production for various axial regions and individual fuel pins.
- The future work will be applying other impurity indicator isotope ratios such as ⁶Li/⁷Li, ⁴⁸Ti/⁴⁹Ti and ²³⁵U/²³⁸U. In addition, more sensitivity tests for the number and position of sampling regions will be performed because practical location of sampling region in the actual reactor is unclear.