Robust Canisters with a Nanoporous Oxide Layer for Spent Nuclear Fuel Storage

Jaewoo Lee, Jun Heo, and Sung Oh Cho^{*}

Department of Nuclear and Quantum Engineering, KAIST, Daejeon, Republic of Korea *Corresponding author: socho@kaist.ac.kr

Introduction

- Spent nuclear fuel (SNF) canisters in dry storage
 - ✓ Switch to dry storage due to saturation of wet storage facilities
 - Mainly made of austenitic stainless steel \checkmark
 - Easy to be exposed to saline environments \checkmark
 - \rightarrow Nuclear power plant located mainly on the coast
 - Very vulnerable to chloride-induced stress corrosion cracking \checkmark (CISCC)^[1,2]
- **Methods to protect stainless steel from CISCC**
 - Currently the use of coatings and alloying \checkmark
 - \rightarrow A limit to the use of another materials

Results & Discussion

• Fabrication of nanoporous oxide layer

- ▲ FESEM images of (a) the pristine stainless steel and (b) anodized stainless steel surface
- Many nanopores on the surface for anodized stainless steel
- \rightarrow Average pore size: ~50 nm
- Observation of oxygen peak ntensity (a.u. \rightarrow Oxidation of the surface

Fe (austenite) Fe (δ-ferrite)

E a				
re	;			

- ✓ Need for a facile route to protecting stainless steel
- **Electrochemical anodization** \rightarrow

Anodization

KAIST

VQe Nuclear & Quantum Engineering

Quantum

- ✓ Fabrication of a self-organized protective oxide layer
- Nanopores on nanoporous oxide layer \checkmark
- \rightarrow Alleviate the stress during oxide formation
- \rightarrow Higher mechanical properties

Materials & Methods

Materials

- Working electrode: Type 304 stainless steel sheet (1 mm in thickness)
- Counter electrode: Pt sheet (10 mm × 40 mm × 0.5 mm) \checkmark
- Electrolyte: Ethylene glycol solution containing NH_4F (0.1 wt.%) \checkmark and water (0.1 wt.%)

Sample preparation

- Sonication: Removing any type of impurities (using ethanol \checkmark and deionized water for 5 min each)
- Anodization: Constant voltage (60 V), room temperature, fixed electrode distance (20 mm)

- Mechanical properties of nanoporous oxide layer
 - Excellent adhesion of the nanoporous oxide layer
 - \rightarrow The level of HF 2^[4]
 - Similar hardness to pristine stainless steel
 - → ~160.0 HV
 - \rightarrow Due to the amorphous phase of the oxide layer

▲ FESEM image of the anodized stainless steel surface after VDI 3198 test (inset: an example of HF 2 mode from Daimler-Benz method^[4])

Conclusions

- Nanoporous oxide layer on the surface of type 304 stainless steel produced by anodization showed excellent adhesion to the substrate
- Amorphous phase of nanoporous oxide layer has the low hardness but is mechanically stable, avoiding damage to the substrate

- Rinsing: Using ethanol carefully \checkmark
- Drying: 50 °C oven \checkmark
- **Sample characterizations**
 - **FESEM:** Surface morphology \checkmark
 - **EDX: Element distribution** \checkmark
 - XRD: Crystal structure \checkmark
 - VDI 3198: Adhesion \checkmark
 - Vickers: Hardness

▲ Schematic view of anodization system

Nanopores on the stainless steel surface relieve stress acting in the material and block aggressive chlorine to prevent CISCC

Acknowledgement

This work was supported by the National Research Foundation (No. 2019M2D2A1A02058174).

References

[1] D. Ogg, U.S. Nuclear Waste Technical Review Board, Rev. 1A (2017). [2] S. Marschman, Stainless Steel Canister Challenges, NEET ASI Review *Meeting*, Idaho National Laboratory (2014). [3] S. K. Saha et al., Journal of Molecular Liquids, 296, 111823 (2019). [4] Verein-Deutscher-Ingenieure, VDI 3198, VDI-Verlag, p.7 (1992).