Assessment of model uncertainty for effective thermal conductivity model of the SPACE in crumbled fuel

Jong Hyuk Lee^{a*}, Seung Wook Lee^a, Chiwoong Choi^a, Byung Hyun You^a, Kwi Seok Ha^{a*} ^a*Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon, 34057, Rep. of Korea*

*Corresponding author: leejonghyuk@kaeri.re.kr , ksha@kaeri.re.kr

Background and Objective

- Under LOCA conditions, clad ballooning can occur due to internal overpressure and fuel rods can be overheated and undergo a complex process known as fuel fragmentation, relocation, and dispersal (FFRD) dependent upon fuel burnup.
- **The developed model for FFRD phenomena have been**

Thermal conductivity Model

- Effective thermal conductivity of crumbled fuel
 - Chiew and Glandt model (implemented in FRAPTRAN)

$$\frac{\lambda_{eff}}{\lambda_{f}} = \frac{\left(1-\beta\right)}{\left(1+2\beta\right)\left(1-\beta\phi\right)} \left(1+2\beta\phi+\left(K_{2}-3\beta^{2}\right)\phi^{2}\right)$$

added to the SPACE to take into account the effect of mass relocation on heat generation and thermal conductivity degradation.

Objectives of this paper

To assess the model uncertainty for effective thermal conductivity by comparing the experimental data for measured effective thermal conductivity of uranium oxide power in the gases.

Assessment

- Boegli & Deissler's experimental study(1955) was introduced to compare the model accuracy for an effective thermal conductivity of crumble fuel.
- The experiments were conducted between 200 and 1500 °F in an atmosphere of various gases. The powder had a mean particle size of approximately 85um. The void fraction occupied by the gas was 0.405.
 In the assessment, the thermal conductivity of UO₂ was acquired from the internal thermal property function of the SPACE at each temperature. And thermal conductivity of gases (He, He/Ar) was taken from ref*. data

Where,

Thermal conductivity of fuel fragmentation (λ_f) , Thermal conductivity of gas (λ_g) , and Packing fraction (ϕ)

 $K_{2}(\beta, \phi) \approx K_{2}^{(0)}(\beta) + K_{2}^{(1)}\phi$ $K_{2}^{(0)}(\beta) = 1.7383\beta^{3} + 2.8796\beta^{2} - 0.11604\beta$ $K_{2}^{(1)}(\beta) = 2.8341\beta^{3} - 0.13455\beta^{2} - 0.27858\beta$

자력연구원

Korea Atomic Energy Research Institute

Calculated effective thermal conductivity of UO2 powder in various gases, in comparison with experimental data

Conclusions

KAERI

- Effective thermal conductivity model was implemented into the SPACE. The implemented model was assessed by comparing with experimental data for measured effective thermal conductivity of UO₂ powder in the various gases.
- It is clear that Chiew and Glandt correlation for effective thermal conductivity reproduces the experimental data quite well within 25% of uncertainty.

Comparison of effective thermal conductivity of UO₂ powder in various gases at a temperature of 850 K & packing fraction of 0.595.

Ref* : J.S. Boegli & R.G. Deissler, NACA RM E54L10, 1955.

Virtual Nuclear Power Plant Technology Development Division