

Feasibility Study for Compton Computed Tomography (CT) for Radioactive Waste Drum Monitoring

2021.05.13.

<u>이 준 영1 · 이 현 수1 · 최 세 훈1 · 최 상 현2 · 김 경 민2 · 김 찬 형1*</u>

1한양대학교 원자력공학과

2한국원자력의학원 방사선의학연구소

HANYANG UNIVERSITY

2021 한국원자력학회 춘계학술발표회(21.05.12. - 21.05.14.)

Introduction

Decommissioning of nuclear facilities

900-1300 MW(e) PWR

ltem*	Drums
Activation metal	500
Activation concrete	900
Pollution finishing metal	100
Contaminate metal	3,000
Contaminate concrete	1,800
Dry active solid waste	7,400
Total	13,700

Disposal cost for radioactive waste: ~300 billion won

*ref: International Atomic Energy Agency, Managing Low Radioactivity Material from the Decommissioning of Nuclear Facilities, Technical report series No.462, Vienna, (2008).

Necessity of hot-spot contamination imaging

Hot spot contamination

- \rightarrow tend to increase average activity of radioactive waste
- \rightarrow increase of the volume and disposal cost of radioactive waste

Identifying and removing hot-spot contamination

*ref: International Atomic Energy Agency, Locating and Characterizing Disused Sealed Radioactive Sources in Historical Waste , IAEA Nuclear Energy Series No. NW-T-1.17, Vienna, (2008).

3D Compton imaging for internal contamination

Large-Area Compton Camera (LACC)

- Uses large detectors (a few tens cm)
 - → high imaging sensitivity (a few tens of times higher)
 - \rightarrow 3-D imaging capability
 - & Estimation activity capability

Ref: Y. Kim et al, "Large-Area Compton Camera for High-Speed and 3-D Imaging," IEEE Transactions on Nuclear Science, vol. 65(11), pp. 2817-2822, (2018).

Necessity of attenuation map for hot-spot analysis

- Accuracy enhancement of radioactive waste sorting process
 - → 3-D image of hot-spot & Structural image of waste drum
 - → Quantitative analysis of hot-spot contamination

Objective of this study

Compton CT (Transmission imaging)

Compton imaging (Emission imaging)

Drum rotation system

Activity estimation of

hot spot in waste drum

Quad-type

LACC

Materials and Methods

Principle of conventional gamma CT

Single event

Using <u>energy window</u>

- Select an event in which the photon is fully absorbed in detector
- Loss of Compton scattered events

Principle of Compton CT

Quad-type LACC Single events ¹³⁷Cs source **Coincidence events**

Coincidence event

- Using <u>Compton kinematics</u>
- Select an event in which the photon scatters in first detector and then interacts in second detector coincidentally

Principle of Compton CT

Selection of effective events for coincident events

(a) Examples of effective events for coincident events

(b) Examples of non-effective events for coincident events

LACC-based Compton CT

LACC-based Compton CT

- Using two position-sensitive detectors
 - → making sinogram with both single events and coincidence events
 - \rightarrow Increasing of efficiency and precision.
 - \rightarrow No need of extra equipment

Activity quantification by Compton camera

Efficiency of Compton camera (internal)

<u>ɛ: full-energy-peak detection efficiency</u>

Components of Compton CT system

Gamma-ray source for CT

Cs - 137 Intracavitary tube source for manual afterloading, 3 M, series 6500.

Gamma-ray source for CT

- Source: 32 mCi ¹³⁷Cs tube source (KIRAMS)
- Collimator: lead collimator (10×10×15 cm³)
 - → Generate cone-beam-shaped gamma-rays
 - \rightarrow Opening hole size: 1.5×1.5 cm²
- <u>Source-to-detector distance: 4 m</u>

Rotation system

> Rotation system

- Servo motor: MINAS A5B (Panasonic, Japapn)
- Power range: 50 W 1500 W
- Data transmission: EtherCAT
- Supportable weight: ~800 kg

Large-Area Compton Camera (LACC)

Large-area Compton Camera (LACC)

- Crystal: 2×2 NaI(TI) (14.6×14.6 cm²)
- PMT: XP3290; Photonis, France
- High imaging sensitivity
- 3D Compton imaging
- Energy resolution: 6.9% (@ 662 keV, ¹³⁷Cs)
- Position resolution: 5 mm

Compton CT experiment: IAEA phantom

Imaging object

- IAEA standard phantom for industrial gamma CT
- Diameter: 20.32 cm (USA) / 40 cm (Korea)
- Height: 22 cm
- Material: PP (ρ = 0.91 g/cm³)
- Two holes were filled with air

Object for experiments: 200 L drum

> 200 L Drum

- Dimension: Φ57 cm × 85 cm (10T)
- Material: iron
- Various object inside a drum

Compton CT set up

Compton CT set up

- Source-to-detector distance: 4 m
- Isocenter-to-detector distance: **35 cm**
- Supportable weight of drum: ~800 kg
- Supporting dimension: Φ60 cm

Compton CT set up

Compton CT set up

- Rotation interval: 5 degree
- Number of projections: 72 projections
- Measurement time: 20 sec / projection
- Sinogram pixel size is **5 mm**, CBCT reconstructed voxel size is **5 mm**

Compton CT set up

- Selection of effective events by Compton CT
 - Energy window of 662±45 keV
 - Scatter angle difference window of ± 15°
- Cone beam CT Image reconstruction
 - Cone beam filtered back projection (CBCT-FBP)
 - with the Hann filter (cutoff frequency 0.75)

Root Mean Square Error (RMSE) estimation

 \succ To estimate the reconstruction error in the attenuation maps,

Root Mean Square Error (RMSE)* was calculated for selected cases.

$$RMSE = \frac{\sqrt{\sum_{i=1}^{N} (\mu_i^{recon} - \mu_i^{true})^2}}{N}$$

*ref: TECDOC, IAEA. "1589, Industrial Process Gamma Tomography, Final Report of a Coordinated Research Project 2003–2007." *International Atomic Energy Agency, Austria* (2008).

Results

Compton CT experiment: IAEA phantom

Imaging object

- IAEA standard phantom (USA)
- Diameter: 20.32 cm
- Height: 22 cm
- Material: PP ($\rho = 0.91 \text{ g/cm}^3$)
- The one holes were filled with air
- The another was filled with air, PP, and Fe pillar, respectively.

Results: IAEA phantom

Results: IAEA phantom with PP

Results: IAEA phantom with Fe

Compton CT experiment: 200 L drum

200 L drum with IAEA phantom

Imaging object

- 200 L drum with IAEA phantom (Korea, D = 40 cm)
- IAEA phantom was shifted to 5 cm for isocenter.

Result: 200 L drum with IAEA phantom

200 L drum with IAEA phantom

Compton CT experiment: 200 L drum

200 L drum with heterogeneous objects & ¹³⁷Cs source

Imaging object

- <u>200 L drum with IAEA phantom (USA), water bottles, gloves,</u> bricks, phantoms, etc.
- The glove was filled with sand.

Integrated image: 200 L drum with sources

200 L drum with heterogeneous objects & ¹³⁷Cs source

Efficiency of Compton camera (internal)

ε: full-energy-peak detection efficiency

Ref: E. Muñoz et al., Physics in Medicine & Biology., 63.13 (2018): pp 0–18.

Quantitative analysis of internal hot spot

200 L drum with heterogeneous objects & ¹³⁷Cs source

Object: drum with various materials **Source**: ¹³⁷Cs **Location**: @(10, 0, 5) cm **True activity**: 7.04 μCi **Measurement time (activity)**: 20 min.

Condition	True activity (μCi)	Estimated activity (µCi)	Difference
No attenuation map		8.4×10 ⁻³	838 times
Avg. attenuation map	7.04	3.72	1.89 times
Attenuation map		8.12	1.15 times

Quantitative analysis of internal hot spot

200 L drum with heterogeneous objects & ¹³⁷Cs source

Object: drum with various materials **Source**: ¹³⁷Cs **Location**: @(-10, -10, 5) cm **True activity**: 7.04 μCi **Measurement time (activity)**: 20 min.

Condition	True activity (μCi)	Estimated activity (µCi)	Difference
No attenuation map		1.28	19.64 times
Avg. attenuation map	7.04	10.72	1.52 times
Attenuation map		9.27	1.32 times

Quantitative analysis of internal hot spot

200 L drum with heterogeneous objects & ¹³⁷Cs source

Object: drum with various materials **Source**: ¹³⁷Cs **Location**: @(0, 15, 5) cm **True activity**: 7.04 μCi **Measurement time (activity)**: 20 min.

Condition	True activity (μCi)	Estimated activity (µCi)	Difference
No attenuation map		1.1×10 ⁻²	640 times
Avg. attenuation map	7.04	2.53	2.78 times
Attenuation map		6.81	1.03 times

Conclusion

Conclusion

- In the present study, as a preliminary study, a LACC-based Compton CT was developed to estimate the activity of the spot inside the radioactive waste drum. To improve the reliability of activity estimation, the 3D attenuation map was reconstructed by using two position-sensitive detectors without additional equipment.
- The experiments using IAEA phantoms, filled with air, polypropylene, and an iron pillar, respectively, were then performed to verify that the attenuation map was reconstructed properly. Furthermore, the <u>additional</u> <u>experiment assuming the real radioactive waste drum</u> was performed to demonstrate the feasibility of the developed Compton CT.
- As a result of the experiment with IAEA phantoms, it was confirmed that the 3D attenuation map was successfully reconstructed within the RMSE of 7.23×10⁻⁴ for the various filling materials. It was also confirmed that the activity of the source inside the drum was calculated in a **discrepancy of 1.32 times** compared with true activity, applying the 3D attenuation map.
- The LACC-based Compton CT is expected to be used to improve the economics of radioactive waste disposal.

Thank you