Toward the Robust and Resilient Nuclear System for the Highly Improbable Event

Korean Nuclear Society Spring Meeting May 13-14, 2021

Analysis of IVR-ERVC Evaluation Characteristics for Small Reactor

Rae-Joon Park, Donggun Son, Sang Ho Kim

Korea Atomic Energy Research Institute

IVR-ERVC

IVR-ERVC(In-Vessel corium Retention through

External Reactor Vessel Cooling)의 원전 적용 현황

 증대사고 대처설비: APR1000 & SMART in Korea, AP600 & 1000 in USA, KERENA(BWR, SWR1000의 새 노형) in Germany & France(AREVA), Loviisa in Finland, CAP1000 & 1400 in China, SMART, and so on

○ 중대사고 관리방안: 가동 원전(국내 OPR1000 등), APR1400, APR+ 등

□ IVR-ERVC**의 인허가**

 증대사고 대처설비 : DC (Design Certification) 때부터 SSAR 19.2 절에 기술, PSA와 SAMG에 적용

 증대사고 관리방안 : DC 때는 기술하지 않고 OL(Operating License)시 SAMG(Severe Accident Management Guidance)에 반영 (가용성 및 최소한 유로 확보는 필요)

Aanalysis of the IVR-ERVC evaluation characteristics of small power reactor of SMART to compare with high power reactor, such as APR1400

APR1400 IVR-ERVC

☆ 원자로공동(Reactor Cavity)에 펌프 사용 냉각수 능동 주입

 APR 1400: The cavity is flooded by the SCP and the BAMP (to the Hot Leg Penetration Bottom Elevation).

4

SMART IVR-ERVC

✤ 원자로공동에 냉각수 피동 주입: 밸브 개방

IVR-ERVC Analysis Method

Required System for IVR-ERVC

- Safety Depressurization System: POSRV in APR1400, ADS in SMART
- CFS(Cavity Flooding System) with IRWST(In-containment Refueling Storage Tank)
- Reactor Vessel Insulation and Steam Venting System

IVR-ERVC Analysis Method Development

- Thermal Load Analysis from corium pool to RPV using severe accident analysis computer code, such as CINEMA-SMART
- Analysis of Coolant Natural Circulation Between Outer Vessel Wall and Insulation using thermal hydraulic analysis computer code, such as MARS, SPACE
- Analysis for Maximum Heat Removal Rate (CHF) on Outer Vessel Wall based on the Coolant Natural Circulation Mass Flow Rate
- To evaluate the thermal margin by comparison of the thermal load with the CHF
 > IVR-ERVC Success Criteria: CHF > Thermal Load
- Structure Integrity Analysis for Reactor Vessel Wall using structure analysis computer code, such as ANSYS

Design Parameters

Design Parameters	APR1400	SMART100	
Core Thermal Power (MW)	3983	365	
Fuel(UO ₂) Mass (ton)	120.0	16.8	
Mass for Active Core Zircaloy-4 (ton)	33.6	4.7	
Bottom Head Inner Diameter (m)	4.7	5.3	
Bottom Head Thickness (cm)	16.5	20.0	
Number of ICI Nozzle in the Lower Head	61	None	

Low thermal Power than High Reactor Vessel Size & No ICI Nozzle lead to increase in thermal margin for SMART IVR-ERVC.

Natural Convection Correlation for Thermal Load

Model	Upper Part	Lower Part		
Metallic Layer	Globe-Dropkin $Nu_{3} = 0.069 Ra_{3}^{0.333} Pr_{3}^{0.074}$	Globe-Dropkin $Mu_{l} = 0.069 Ra_{l}^{0.333} Pr_{l}^{0.074}$		
	Churchill and Chu correlation for side wall hea transfer (focusing effect)	at Nu = 1 + $\frac{0.15 (Ra \cdot sin \theta)^{1/3}}{\left(1 + \left(\frac{0.492}{Pr}\right)^{9/16}\right)^{16/27}}$		
		Mini-ACOPO		
		$\frac{Nu_{d}}{Nu_{d}} = 0.1 + 1.08 \left(\frac{\theta}{\theta_{tot}}\right)$		
Oxidic Layer	Kulacki-Emara	$-4.5\left(\frac{\theta}{\theta_{tot}}\right)^2 + 8.6\left(\frac{\theta}{\theta_{tot}}\right)^3$		
	$Nu_d = 0.345 (Ra_{q\mu})^{0.226}$	for $0.1 \le \left(\frac{\theta}{\theta_{tot}}\right) \le 0.6$ and		
		$\frac{Nu_{d}}{Nu_{d}} = 0.41 + 0.35 \left(\frac{\theta}{\theta_{tot}}\right) + \left(\frac{\theta}{\theta_{tot}}\right)^{2}$		
		for $0.6 \le \left(\frac{\theta}{\theta_{me}}\right) \le 1.0$		

주요 상관식 적용범위

Model			Range of applicability	
		neat transfer Correlation	Ra	Pr
ERI	Ceramic Pool	Mayinger	7x10 ⁶ - 5x10 ¹⁴	0.5
		Kulacki-Emara	2x10 ⁴ - 4.4x10 ¹²	7
	Top Metal Layer	Globe-Dropkin	3x10 ⁵ - 7x10 ⁹	0.02-8750
		Churchill-Chu	0.1 - 10 ¹²	Any
DOE	Ceramic Pool	Mini-ACOPO	10 ¹² - 7x10 ¹⁴	2.6-10.8
	Top Metal Layer	Globe-Dropkin "Specialized"	3x10 ⁵ - 7x10 ⁹	0.02-8750
		Churchill-Chu	0.1 - 10 ¹²	Any
INL	Ceramic Pool	АСОРО	10 ¹² - 2x10 ¹⁶	4-7
	Top Metal Layer	Globe-Dropkin	3x10 ⁵ - 7x10 ⁹	0.02-8750
		Churchill-Chu	0.1 - 10 ¹²	Any

Thermal Load Analysis

Corium Relocation to the Lower Plenum

Non-Dimensional Number	APR1400	SMART100
Ra Number in Metal Layer	10 ¹⁰	108
Ra Number in Oxide Layer	10 ¹⁶	1013

최대열제거량 평가방법

- CHF: as a function coolant circulation mass flow rate between RPV wall and RV insulator
- To determine the coolant circulation mass flow rate using MARS or SPACE computer codes
- To determine the maximum heat removal rate of CHF using the experimental data at CEA and KAIST

MARS or SPACE Input Model

No.	Description	
Heat Structure 100	Spherical Reactor Vessel	
Heat Structure 200	Cylindrical Reactor Vessel	
Single Volume 20	Volume Between the Reactor Vessel Bottom and the Insulation	
Annulus 30, 40 ,50	Volume Between the Spherical Reactor Vessel and Insulation	
Annulus 60,70, 80, 90	Volume Between the	
Single Volume 92	Cylindrical Reactor Vessel and Insulation	
Annulus 100	Reactor Vessel Outside Cavity Volume	
Single Volume 10	Bottom Side Cavity Volume	
Single Volume 15	Bottom Cavity Volume under the Reactor Vessel	
Time Dep. Volume 104	Containment Atmosphere	
Time Dep. Volume 106	Water Source (IRWST)	
Single Junction 16	Water Inlet	
Single Junction 63	Water Outlet	
Single Junction 93	Steam Outlet	

Experimental Data for CHF

Coolant Circulation Mass Flow Rate in APR1400 = Approx. 900-1200 kg/m².sec Coolant Circulation Mass Flow Rate in SMART = Approx. 250-590 kg/m².sec

CHF Value

CHF Value (Gap size= 10 cm, Saturated Water) in APR1400 : 1.4 - 1.9 MW/m²

CHF Value (Gap size= 10 cm, Saturated Water) in SMART : 1.3 - 1.4 MW/m²

Mean Heat Flux to	Mean Coolant R	R Coolant Mass Flux (kg/m².s)	Estimated CHF (MW/m ²)	
Lower Hemisphere of Reactor Vessel (MW/m ²)	ecirculation Mass Flow Rate (kg/s)		Results of SULTAN Test	Results of KAIST Test
0.401	405	253 - 506	About 1.3	About 1.3
0.489	460	287 - 575	About 1.3	About 1.4
0.536	470	293 - 587	About 1.4	About 1.4

Conclusions (1)

- There is no difference between the high and small power reactors in IVR-ERVC evaluation method in general.
- However, main difference for IVR-ERVC evaluation is in scale, which affects heat transfer in molten pool and natural convection outside reactor vessel wall.
- In heat transfer evaluation for molten pool, non-dimensional Rayleigh number for used correlations are used.
- For this reason, the difference between the high and small power reactors is that these values, namely, a large value in the APR1400 and a small value in the SMART, which affects the used correlation value.
- In natural convection outside reactor vessel wall, the difference between the high and small power reactors is value of the natural coolant circulation mass flow rate, which depends on the geometry scale and heat flux from the corium pool to the coolant in the outer reactor vessel wall.

Conclusions (2)

- The difference between two reactors of SMART and APR1400 is a large value in high power reactor and a small value in small power reactor. This affects the CHF on the outer reactor vessel wall.
- If experimental data on the CHF, such as SULTAN and KAIST experiment are used, the maximum heat removal depends on the coolant circulation mass flow rate. The large value in this mass flow rate leads to large value of the CHF, but a small value leads to a small value.
- For this reason, it is concluded that. there is no difference on the IVR-ERVC evaluation method between the SMART and APR1400, because non dimensional Rayleigh number and experimental data are used, which depends on the reactor scale

Toward the Robust and Resilient Nuclear System for the Highly Improbable Event

Thank You!

