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1. Introduction

The regulatory requirement for severe accident 

management strategies has been evaluated at the system 

analysis code level [1]. The system analysis codes, like 

MELCOR code, have obvious strengths which can 

analysis the thermal hydraulic behavior in an entire 

reactor coolant system over extended periods of time. 

However, these codes cannot explicitly model the three-

dimensional fluid behavior which can significantly affect 

the accident progress.  There is an example of calculating 

the inlet plenum mixing fraction and recirculation ratio 

using the computational fluid dynamics (CFD) code as 

documented in NUREG-1781 [2]. It means that CFD 

codes will be used more actively in regulatory research. 

Despite the improvement in computer performance, it 

is still difficult to simulate extended time with CFD 

simulation requiring fine grid and small timestep. This is 

especially true for turbulent or reacting flow 

accompanied by less than 𝑚𝑚 and 𝑚𝑠 scale [3, 4]. For 

this reason, research on CFD acceleration skill is a 

remaining issue to advance regulatory technology. 

Since Rechenberg’s evolutions strategy, machine 

learning has been applied to fluid dynamics. Recently, 

there are many data driven studies to predict the CFD 

variable fields of next timestep by previous fields. 

However, they noted that it is still difficult to predict 

multistep flow field due to error accumulation [5]. In this 

study, we proposed a novel concept of machine learning 

framework to enhance the CFD calculation speed. To 

investigate the feasibility of the framework, the accuracy 

of the machine learning aided CFD simulation was 

evaluated with the tier-derivative system based neural 

network. 

2. Construction of CFD datasets

2.1 Modeling and Simulation 

To evaluate the accuracy of the machine learning 

aided CFD simulation, the datasets from CFD simulation 

was needed. In this study, CFD datasets were constructed 

from results of a stabilized hydrogen flame simulation 

(5.0 vol%) by using the ANSYS Fluent 18.0 code. 

Because this study was an early step of machine learning 

performance evaluation, the case study on laminar flame 

was carried out. The Fluent-CHEMKIN solver was 

particularly developed to couple the fluid dynamics with 

chemical combustion reactions.  Investigation of the lean 

hydrogen flame is an essential part of the containment 

safety analysis. Especially, the stabilized flame analysis 

is vigorously being performed to evaluate the unique 

flammable limit of each mixture condition and compare 

the flame characteristics according to each concentration. 

Fig. 1 shows the computational domain which is an 

axisymmetric geometry with a height of 100 mm and a 

diameter of 25 mm. The modeled geometry is the same 

size to that used in our previous study observing the 

flame extinction of stretched hydrogen flames [4]. 

Unlike the previous study, the transient solver was used 

to produce the 5.0 vol% hydrogen flame CFD datasets 

over time (1 𝑚𝑠 timestep).  

The species transport model, which can calculate the 

mixing and transport of chemical species by solving a 

conservation equation describing convection, diffusion, 

and detailed chemical kinetics, was used to examine the 

flame structure in the micro-region. The radiative 

transfer equation was solved using the discrete ordinates 

(DO) radiation model that solves the radiative heat 

transfer for a finite number of discrete solid angles. The 

DO radiation model is known to cover the entire range of 

optical thicknesses. The absorption coefficient of each 

cell was calculated by using the weighted-sum-of-gray-

gases (WSGG) model [6].  

The wall boundary condition was considered non-slip 

and isothermal because only a slight increase in wall 

temperature was observed in the experiments [7]. The 

mesh was uniformly structured to a size of 0.1 mm × 0.1 

mm through the mesh sensitivity studies with a 

benchmarking simulation [8] (Fig. 1). The detailed 

modelling and validation results can be found in Ref [4]. 

Fig. 1. Axisymmetric cylindrical domain and boundary 

conditions for 5.0 vol% hydrogen flame CFD datasets. 



2.2 Datasets 

The datasets for this preliminary study consisted of a 

partial timeline within the entire simulation timeline. The 

entire timeline for stabilized flame generation process 

was depicted in Fig. 2. At 0 s before ignition, the 

temperature of all domain is 300 K. In 0.05s, the 

temperature and flame propagate out of the ignition area 

by the occurrence of ignition. The flame continues to 

expand until 0.5 s when the ignition energy is in effect. 

After 0.5 s, the flame begins to stabilize through the 

balance of heat loss mechanisms (conduction, radiation, 

convection) and combustion heat generated by the 

existing flame. This flame stabilizing period was selected 

as the subject of this study, hence the simulation results 

on the 0.600-0.605 timeline was used as datasets. 

Specifically, the results on 0.600-0.601 were used as 

training/validation sets and 0.601-0.605 were used as test 

sets. Methodology verification through extended 

timeline is our future works. 

Fig. 2. Overall stabilized flame generation process from 0 to 1 

sec by CFD temperature fields. 

From the selected timeline of CFD results, variables to 

be used for neural network training and prediction was 

determined. Fig. 3 shows the instantaneous variable 

fields for machine learning at timestep 𝑡. The variables 

used to learning machine was consists of flow variables  

𝑣𝑥 , 𝑣𝑧 and temperature variables 𝑇, and species variables

𝑋𝐻2
, 𝑋𝐻2𝑂 , 𝑋𝑂2

. More specifically, the data series in

timestep  𝑡  were used as input, and the data series in 

timestep 𝑡 + 1  were used as output during 

training/prediction. The detailed input/output system will 

be described in Section 3.4. 

Fig. 3. Instantaneous fields of flow variables  𝑣𝑥, 𝑣𝑧  and

temperature variables 𝑇, and species variables 𝑋𝐻2
, 𝑋𝐻2𝑂, 𝑋𝑂2

.

3. Machine learning methodology

3.1 Concept of Machine Learning aided CFD Network 

Fig. 4 shows our novel concept of machine learning 

aided CFD network. It was noted that each of CFD and 

machine learning is not utilized alone, but the network is 

a combination form of both tools. The calculation of 

CFD alone has the limitations of the aforementioned 

computational cost, and the Machine learning alone 

cannot be free from error accumulation. The principle of 

the machine learning aided CFD network (MACnet) is to 

continuously update the parameters (weight, bias) of the 

neural network through CFD simulation at the 

connection point.  

The machine (neural network) trained by the CFD 

results of timestep 𝑡 and 𝑡 + 1, predicts the CFD results 

of timestep from 𝑡 + 2  to 𝑛𝑡 . The prediction of the 

variable fields over single timestep is called multistep 

times series prediction. When the residual of the CFD 

results predicted by machine learning reaches a certain 

value, CFD simulation is performed again to obtain new 

parameters. For successful implementation of the 

MACnet, sufficient research on the loss function during 

training and prediction should be conducted. This is our 

future study. In this study, the feasibility of multistep 

time series prediction by single parameter update was 

investigated. 

Fig. 4. Concept of machine learning aided CFD network with 

sequential parameter updating. 
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3.2 Procedure of machine learning for preliminary study: 

multistep time series prediction 

Fig. 5 shows the procedure of machine learning in this 

study.  After the simulation by Fluent code, the data 

preprocessing of the CFD results is required to transform 

them into a suitable matrix form for neural network 

training as shown Eq. (2). Finally, neural network 

trained by the preprocessed CFD results predicted the 

variable fields for next timestep. Because this study 

aimed to predict the variable fields through single 

parameter update, the machine learning results were not 

used for CFD simulation again. 

Fig. 5. Procedure of machine learning aided CFD simulation 

with single parameter update.  

3.3 Configuration of neural network 

In this study, the accuracy of simple structured neural 

network to predict CFD variable fields was evaluated. 

Table I shows the important properties of the neural 

network model. Single hidden layer with 64 neurons 

composes the network. The number of inputs and outputs 

will be described in Section 3.4. 

To minimize the mean square error (MSE) with the 

ground truth field (CFD), the Adam optimizer is used. 

Eq. (1) shows the gradient descent (GD) optimizer to 

determine weight and bias for each neuron. Gradient of 

loss function in each neuron ∇𝐶 can be calculated by the 

back propagation theory. The Adam optimizer (Eq. (2)), 

a kind of back propagation algorithm, was developed to 

enhance the computational speed of the GD optimizer. 

Where 𝑤  is updated parameter, is 𝑚, 𝑣  are moving 

average. 𝜂, 𝛽  is hyperparameters in machine learning. 

Both optimizers end up finding parameters to minimize 

the loss function through epochs (iterations). Iteration for 

parameter determination was repeated until no MSE 

reduction was observed for the 20% validation set.  

Without an activation function, it is difficult to predict 

the nonlinear relationship between the input and output 

variables. As in the momentum equation of CFD code 

(Eq. (3)), the relationship between variables has non-

linearity. For this reason, the ReLU activation function is 

used to introduce the non-linearity in the network.  

Table I: Important properties of the neural network model 

Property Feature (tier) 

Number of inputs 30 

Number of hidden layers 1 

Neurons in hidden layer 64 

Number of outputs 1 

Loss function mean square error 

Activation function ReLU 

Optimizer Adam 
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3.4 Input/output systems for neural network 

We proposed a tier-derivative input/output system to 

imitate the first principles. In the finite volume method 

applied in CFD codes, the mass and heat transport 

between adjacent cells are calculated at every timestep. 

For this reason, we introduced a tier system to the neural 

network input. Each of the six variables of the cell and 

its 4 adjacent cells (2D geometry) used as inputs (Table 

II). In other words, a total of 30 (6 × 5) variable fields 

are used to predict 6 variable fields in the next timestep 

of each cell. The tier system was already proposed in 

previous works, but they simply set the outputs to the 

original values. However, the update of variables in the 

first principles process in a derivative form as shown Eq. 

(3). For this reason, we combined the tier system with a 

derivative system for output (Table II). We expect that 

this increase in analogousness with the first principles 

can improve the machine learning performance along 

with a physics informed error function to be developed 

in future works. 
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Table II: Tier-derivative input/output system 

Input (tier) Output (derivative) 

Flow ∑ 𝑣𝑥,𝑖
𝑡 ,  𝑣𝑧,𝑖

𝑡
5

1

𝑣𝑥,1
𝑡+1 − 𝑣𝑥,1

𝑡

∆𝑡
, 

𝑣𝑧,1
𝑡+1 − 𝑣𝑧,1

𝑡

∆𝑡

Temperature ∑ 𝑇𝑖
𝑡

5

1

𝑇1
𝑡+1 − 𝑇1

𝑡

∆𝑡

Species ∑ 𝑋𝐻2,𝑖
𝑡 , 𝑋𝑂2,𝑖, 

𝑡 𝑋𝐻2𝑂,𝑖
𝑡

5

1

𝑋𝐻2,1
𝑡+1 − 𝑋𝐻2,1

𝑡

∆𝑡
, 

𝑋𝐻2𝑂,1
𝑡+1 − 𝑋𝐻2𝑂,1

𝑡

∆𝑡
, 

𝑋𝑂2,1
𝑡+1 − 𝑋𝑂2,1

𝑡

∆𝑡

4. Results and Conclusions

As described in Section 2.2, the CFD results on 0.600-

0.601 was used as training/validation sets and 0.601-

0.605 was used as test sets. In training of neural network, 

iteration for parameter determination was repeated until 

no MSE reduction was observed for the 20% validation 

set (number of epochs). After the training, the CFD 

results of 0.601 s were input to predict the variable fields 

of 0.602 s by machine learning. Then the 0.602 s variable 

fields were used to predict the 0.603 field, which was 

repeated until 0.605 s.   

Fig. 6. Preliminary results of multistep time series prediction 

with the tier-derivative based neural network. Upper: 

temperature field (𝐾), lower: error field (%). 

In conclusion, Fig. 6 shows the temperature and error 

field of multistep time series prediction from 0.600-

0.605 s. The error field was depicted based on the 

absolute error between the CFD and machine learning 

results. It was identified that the results of the first two 

timesteps showed good agreement with the original CFD 

results, but the error increased from 0.604 sec. There 

were two important observations which can be made 

through the error field results. First, error accumulation 

became remarkable if the parameter update point and the 

prediction point get farther away. It was similar 

phenomena identified in previous studies [5]. Second, 

the local error increased near the flame front. It means 

that the machine learning also suffers from prediction 

difficulties in the stiff calculation region, as in the CFD 

simulation. In this study, the optimization of various 

elements constructing the neural network has not been 

sufficiently performed yet. Our future goal is to evaluate 

the performance of the MACnet for extended timeline 

through neural network improvement. 
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