2021 KNS Spring Meeting

A SIRIUS Validation for an Aerosol Deposition by a Turbulent Flow in the LACE-3A Test

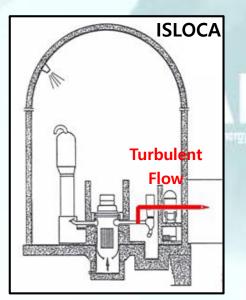
강형석*, 손동건, 하광순 *<u>hskang3@kaeri.re.kr</u>

한국원자력연구원(KAERI) 2021. 5. 13

Table of Contents

- Research Background & Objectives
 Inter-System Loss Of Coolant Accident
 Aerosol Deposition in Turbulent Flow
- LACE Experiment Research by Hanford Engineering
 LACE-3A Test
- Calculation of Aerosol Transport by CSPACE & SIRIUS
 Aerosol Deposition Model
 - **O** Comparison Results between Test Data and Calculation Results

Conclusion and Further Work

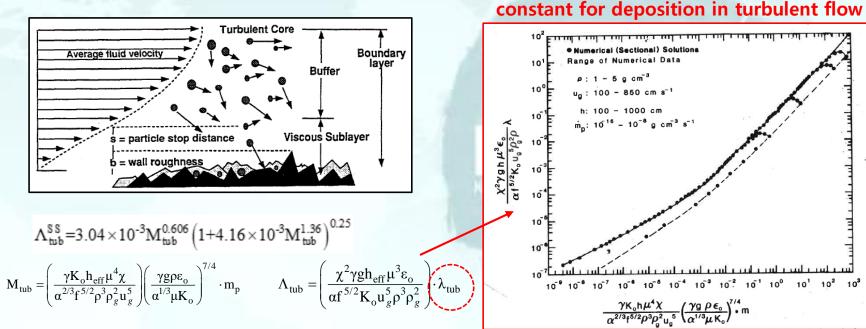

Inter-System Loss Of Coolant Accident

Amendment of Nuclear Safety Action(2015)

- **O** Accident Management Program(AMP) Effective date: 23 June 2016
- **O** Safety Target
 - Site boundary dose < 250 mSv</p>
- **O** Accidents should be considered
 - Containment bypass : TI-SGTR, ISLOCA

Fukushima accident (2011.3.)

Aerosol Deposition owing to Turbulent Flow


Aerosol Deposition in Turbulent Flow

Aerosol Removal Model in the SIRIUS Code

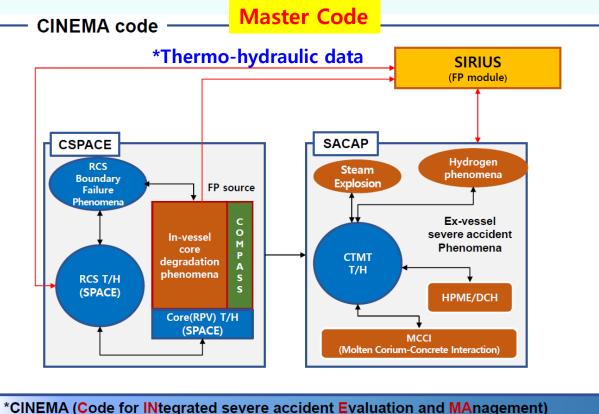
O Sedimentation, Inertial Impaction, Diffusiophoresis, Thermophoresis

O Turbulent Flow $\lambda_t = \lambda_{sed} + \lambda_{imp} + \lambda_{diff} + \lambda_{th} + \lambda_{tub}$

 $\frac{dm_{a,i}^n}{dt} = \dot{m}_{a,i,in}^n - \dot{m}_{a,i,out}^n - \lambda_{t,i}^n m_{a,i}^n + \dot{G}_{a,i}^n$

Korea Atomic Energy Research Institute

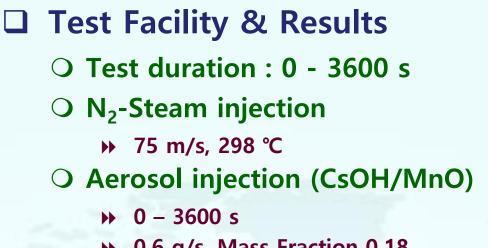
Ref. : M. Epstein, NED 107, pp 327-344 (1988)

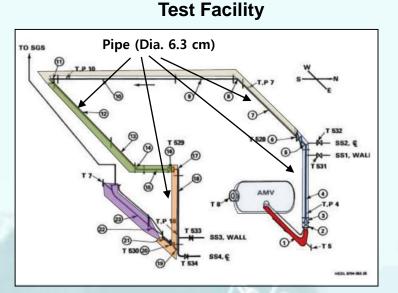

Dimensionless aerosol removal rate

Accident Mitigation Research Team

Coupled Calculation between CSPACE and SIRIUS

□ SIRIUS module for predicting an aerosol transport


- CINEMA code development (2011. 7 2017. 6) : Separated calculation
 - ▶ 2017, KNS Autumn Meeting, H.S. Kang, et al.
- CINEMA code improvement (2019. 5 2023. 4) : Coupled calculation


Korea Atomic Energy Research Institute

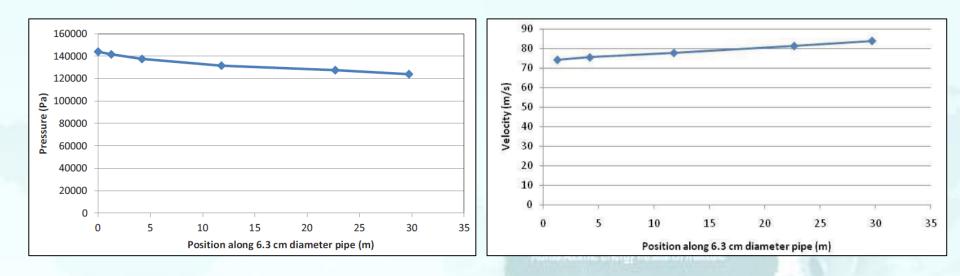
Accident Mitigation Research Team

LACE-3A Test (1)

✤ 0.6 g/s, Mass Fraction 0.18

Test Condition & Result

Test	Aerosol	CsOH Mass Fraction	Carrier Gas	Gas Velocity (m/s)	Temp. (°C)	Aerosol Source Rate (g/s)	Aerosol Size AMMD (μm)	Mass Retention Fraction
LA1	CsOH/ MnO	0.42	Air- steam	96	247	1.1	1.6	> 0.98
LA3 A	CsOH/ MnO	0.18	N ₂ - steam	75	298	0.6	1.4	> 0.7
LA3B	CsOH/ MnO	0.12	N2- steam	24	303	0.9	2.4	> 0.4
LA3C	CsOH/ MnO	0.38	N2- steam	23	300	0.9	1.9	> 0.7

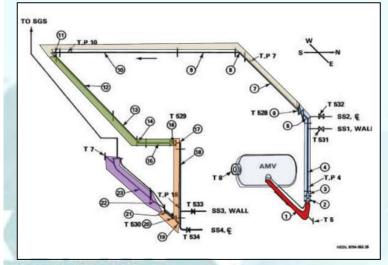


Ref. : NUREG-7110, Vol. 2

LACE-3A Test (2)

□ Thermal Hydraulic Results by MELCOR

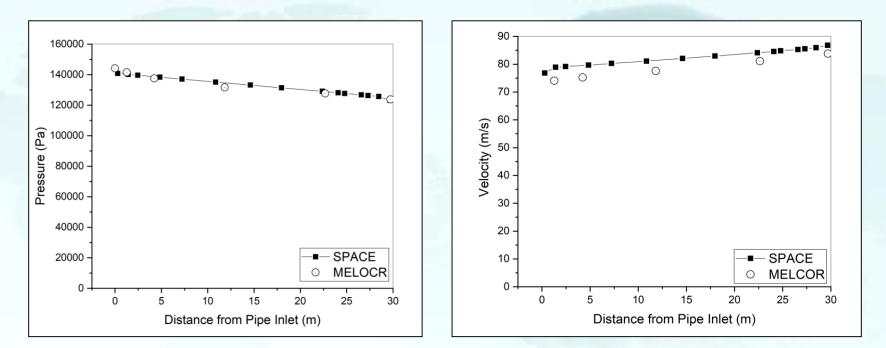
O No measurement data



CSPACE Nodalization for LACE-3A

Section No.	Geometry Description	Flow Direction	Diameter (mm)	Length (m)	SPACE Node No.	SPACE Node Type
1	Mixing Chamber	East	63	-	C010	TFBC (Inlet)
4	Straight	Up	63	2.26	C015	Pipe (4 cells)
5	90° Bend	-	63	0.38	C016	Pipe (1 cell)
6	Ball Valve	West	63	0.19	C017	Pipe (5 cells)
7	Straight	West	63	4.20	017	
8	90° Bend	-	63	0.38	C018	Pipe (1 cell)
9	Straight	South	63	2.58	C019	Pipe (7 cells)
10	Straight	South	63	4.32	019	
11	90° Bend	-	63	0.38	C020	Pipe (1 cell)
12	Straight	East	63	4.32	C021	Pipe (8 cells)
13	Straight	East	63	3.17	C021	
14	90° Bend	-	63	0.38	C022	Pipe (1 cell)
15	Straight	North	63	1.84	C023	Pipe (2 cells)
16	Straight	North	63	0.19	C025	
17	90° Bend	-	63	0.38	C024	Pipe (1 cell)
18	Straight	Down	63	2.15	C025	Pipe (4 cells)
19	90° Bend	-	63	0.38	C026	Pipe (1 cell)
20	Ball Valve	West	63	0.19	C027	Pipe (2 cells)
21	Straight	West	63	0.71	027	
22	Transition	West	63 to 300	1.17	C028	Pipe (2 cells)
23	Transition	West	300	-	C029	TFBC (Outlet)

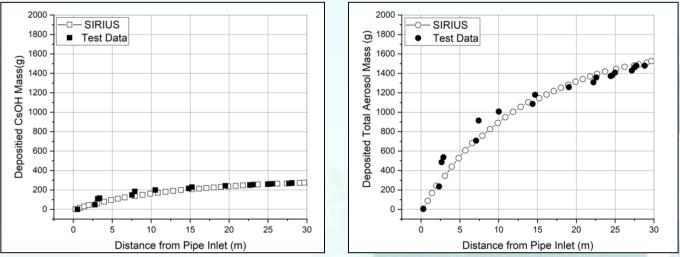
CSPACE Node Dimension and Type


smac Emergy Research Institut

CSPACE Results for LACE-3A

☐ Thermal Hydraulic Calculation Results by CSPACE

- Transient Calculation with 0.0001 s 0.01 s
- **O** Pressure : almost same to MELCOR results
- **O** Velocity : approximately 10% faster flow than MELCOR results


SIRIUS Results for LACE-3A

□ SIRIUS Input and Results

- **O** Aerosol Removal Model : Inertia Impaction & Turbulent Flow
- **O** Shows good agreement with the test data

CsOH + MnO

	Aerosol	Test	SIRIUS
Mass retention fraction on the	CsOH	> 0.7	0.706
pip wall (dia. 6.3 cm)	MnO	> 0.7	0.706

Korea Atomic Energy Research Institute

Accident Mitigation Research Team

Conclusion and Further Work

Conclusion

○ We performed the coupled calculation between the CSPACE and SIRIUS codes against the LACE-3A test to validate the aerosol deposition in turbulent flow in the SIRIUS code.

• The predicted error range is below approximately 10%.

Further Work

 Coupled calculation between the CSPACE and SIRIUS codes should be applied to other test data to increase an applicability of the CINEMA code.

