Portable LaBr₃ Detector Characterization and Radioactivity Calculation using the InterSpec and GADRAS-DRF

Jaeyeong Jang, Woojin Kim* Korea Institute of Nuclear Nonproliferation and Control, Daejeon, Republic of Korea *kimwj@kinac.re.kr

Introduction

- In the management of radiological crime scenes, it is important to quickly analyze unidentified sources.
- Mirion's In Situ Object Counting System (ISOCS) is leading in this field and has excellent performance, but software is expensive, and it takes a lot of time and money to create DCG.
- GADRAS-DRF
- Unlike InterSpec, the GADRAS-DRF uses pre-calculated and embedded detector efficiency and FWHM.
- Detector response function :
- 1) Input various geometry parameters and types of detectors such as LaBr₃, Nal, and HPGe.

Introduced InterSpec and GADRAS-DRF, free software that enables simple detector characterization and activity calculation.

Method and Result

Detection of gamma sources

- To obtain spectrum data, Mirion's SPIR-Ace LaBr₃(Ce) model was used in the experiment as shown in Fig. 1.
 - Table I. Data of gamma source used in the experiment. The activities were corrected to the experiment date.

Source	²⁴¹ Am	¹³³ Ba	⁶⁰ Co	¹³⁷ Cs	¹⁵² Eu
Activity (uCi)	50.754	8.129	3.869	9.177	19.274

2) The calculation is performed by applying the variable to embedded value.

Activity calculation in Analyze tab :

Specify the location of source and additional shield, and the type of source

Calculated Activity of $^{152}Eu \rightarrow 18.23 \pm 0.05 uCi$

Fig. 4. Energy spectrum of 152Eu from the experiment and calculation from GADRAS-DRF.

Fig 1. Instruments for experimental measurements : Bruker S1-Titan 600 (LaBr₃ scintillator size : 1'' by 1.34'')

InterSpec

- **Energy calibration** : The full energy peaks of the source (²⁴¹Am, ¹³³Ba, ⁶⁰Co, ¹³⁷Cs) were specified in the **InterSpec**.
- Make Detector Response : Appropriate peaks and parameters, and activity of sources are entered **Intrinsic efficiency and FWHM** are fitted and displayed.

Activity/Shielding Fit :

1) Apply the response function of $LaBr_3$

detector previously made.

2) Specify the peaks of the interested source (¹⁵²Eu) in spectrum.

Conclusion

- The calculated values of activity of ¹⁵²Eu were 17.24 uCi and 18.23 uCi, respectively. The relative errors for the corrected activity of 19.274 uCi were 11.8% and 5.73%, respectively. More detailed settings of Gadras-DRF made the calculations more accurate than **InterSpec**.
- The result of this study will be used as basic information for analysis of nuclear material.
- In the future, a technology optimized for preliminary characterization of unidentified nuclear materials using a portable gamma detector will be developed to maintain safety from nuclear accidents.

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KOFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of

Calculated Activity of ¹⁵²Eu

 \rightarrow 17.24 ± 0.033 uCi

1173.31	31.55	32523	9.034 ± 0.062	1173.23 keV		
1332.74	35.91	29373	8.159 ± 0.052	1332.49 keV		
2240.52	51.39	165	0.0457 ± 0.00	2158.57 keV 💌		
				• •		
Q Search for Peaks Clear all Peaks 🖨 Nuc. from Ref. Peak: 🕂 Add						
te				∵ csv		
	1173.31 1332.74 2240.52 Search for Pea	1173.31 31.55 1332.74 35.91 2240.52 51.39 Search for Peaks Clear a	1173.31 31.55 32523 1332.74 35.91 29373 2240.52 51.39 165 Gearch for Peaks Clear all Peaks	1173.31 31.55 32523 9.034 ± 0.062 1332.74 35.91 29373 8.159 ± 0.052 2240.52 51.39 165 0.0457 ± 0.00 Gearch for Peaks Clear all Peaks © Nuc. from Ref. Peaks		

Fig. 2. The energy spectrum of ⁶⁰Co source and specified peaks

Fig 3. Create Detector Response Function window in the InterSpec.

the Republic of Korea (Grant No. 1804026).

REFERENCES

[1] INTERNATIONAL ATOMIC ENERGY AGENCY, Radiological Crime Scene Management, IAEA Nuclear Security Series No. 22-G, IAEA, Vienna, 2014. [2] David Sullivan, Meriden, Henrik Jaderstrom, ISOCS/LabSOCS Detector Characterization Report, Canberra Industries, Inc., 2016. [3] William Jonson, Quick Intro InterSpec gamma spectral analysis software,

https://github.com/sandialabs/InterSpec, 2019.

[4] Steve M. Horne, Greg G. Thoreson, Lisa A. Theisen, Dean J. Mitchell, Lee Harding, and Wendy A. Amai, GADRAS-DRF 18.6 User's Manual, Sandia National Laboratories, 2016.

[5] SPIR-Ace Datasheet,

https://www.mirion.com/products/spir-ace-radio-isotope-identification-deviceriid, 2020.