Korean Nuclear Society Autumn Meeting, Jeju, May 12-14, 2021

Influence of Channel Orientation on the Subchannel Analysis of Two-Phase Flow

Dae-Hyun Hwang*, Seong-Jin Kim *(<u>dhhwang@kaeri.re.kr</u>)

Korea Atomic Energy Research Institute

Introduction

Background

- ✓ Water-cooled SMR for ship application
 - Inclined channels in reactor core
 - Need subchannel analysis for evaluation of thermal margin
- ✓ Key features of subchannel codes for interchannel-exchange
 - Diversion crossflow due to lateral pressure gradient
 - Turbulent mixing and void diffusion due to fluctuation
 - Turbulent void drift toward equilibrium state
 - Buoyancy drift due to gravity

Objectives

- Modify MATRA code by considering buoyancy drift effects
- Examine subchannel flow and void distributions for various bundle orientation conditions

Gravitational force in lateral momentum

Mixture momentum equations (MATRA)

Axial momentum

$$\frac{\partial \dot{m}_i}{\partial t} + \frac{\partial}{\partial z} \left(\frac{\dot{m}_i^2 v'}{A_i} \right) + \sum_j w_{ij} u^* + f_T \sum_j w'_{ij} \left(u_i - u_j \right) = -\overline{A} \frac{\partial P}{\partial z} - F_z - A_i \rho_i g \cos \theta$$

Lateral momentum

$$\frac{\partial}{\partial t}W_{ij} + \frac{\partial}{\partial x}W_{ij}U'_{ij} = \frac{s_{ij}}{l}(P_i - P_j) - F_{ij} - \underbrace{s_{ij}\rho_ig\sin\theta\cos\beta_{ij}}_{\text{gravitational loss (added)}}$$

Gap orientation

Modeling of inter-channel mass transfer

Vapor velocity

$$V_{g} = C_{0}j + V_{gj}^{*} - \underbrace{\frac{\varepsilon}{\alpha}\nabla(\alpha - \alpha_{eq})}_{\text{turbulent diffusion and void drift}}$$

Inter-channel mass transfer due to turbulent mixing and void drift

- Liquid: $(w'_{ij})_l = s(\varepsilon/l_t) \cdot \rho_l(1-\alpha_i)$
- Vapor: $(w'_{ij})_g = s(\varepsilon/l_t) \cdot \rho_g(\alpha_i \alpha_{i,eq})$
- Mixture: $w'_{ij} = (w'_{ij})_l + (w'_{ij})_g = s(\varepsilon/l_t) \cdot [\rho_{m,i} \rho_g \alpha_{i,eq}]$
- Inter-channel mass transfer due to buoyancy drift
 - Outward vapor flow due to buoyancy: $(\dot{m}_{ij})_g = \alpha_i^* \cdot \rho_g^* \cdot V_{rise} \cdot (s \cdot dz)$
 - Inward compensating liquid flow: $(\dot{m}_{ij})_l = (\dot{m}_{ij})_g$

Energy transfer due to buoyancy drift

- Assumptions
 - Equal-mass-exchange due to buoyancy drift (vapor-out & liquid-in)
 - Outward vapor-phase from channel-i with saturated gas enthalpy
 - Inward liquid-phase from channel-j with saturated liquid enthalpy
- Subchannel energy balance equation (MATRA)

$$\frac{\partial (A\rho h)_{i}}{\partial t} + \frac{\partial (AGh)_{i}}{\partial x} + \sum_{j} W_{ij} (h^{*} - h_{i}) = Q - \sum_{j} (w'_{ij} h_{i} - w'_{ji} h_{j}) - \sum_{j} w'_{ij,g} (h_{g} - h_{l})$$

$$\underbrace{\sum_{j} w'_{ij,g} (h_{g} - h_{l})}_{\text{turbulent mixing & void drift}} = energy \text{ transfer by buoyancy drift} (added)$$

$$w'_{ij} h_i - w'_{ji} h_j = \left(w'_{ij}\right)_{TP} \cdot \left[\left(\alpha_j - \alpha_i\right) - K_{VD} \frac{\left(G_j - G_i\right)}{G_{avg}}\right] \cdot \left(\frac{\rho_f h_f - \rho_g h_g}{\Delta \rho}\right) ; \text{EVVD}$$

$$w'_{ij,g} = s \cdot \alpha^* \cdot \rho_g^* \cdot \left[1.5 \times F \times \alpha^{0.1} \times \left(\frac{\Delta \rho \cdot g \cdot \sigma}{\rho_l^2} \right)^{0.25} \times \cos \beta_{ij} \times |\sin \theta| \right]$$

vapor rise velocity

2-channel analysis

2-channel geometry

	Ch-1	Ch-2
shape	square	triangular
Hydrauilic diameter (mm)	15.6	11.5
Power factor	0.5	1.0

Test cases

	θ	β_{ij}	Lateral ΔP_g	Buoyancy drift
Vertical	0	NA	NA	NA
Case-1	90	90	0	0
Case-2	90	180	Yes	No
Case-3	90	180	Yes	Yes

Vertical vs. Horizontal

 Friction loss dominant in axial momentum eq.

2-channel analysis

Influence of gravitational force

 Influence of gravitational loss in lateral momentum is not important

Influence of buoyancy drift

 Remarkable energy transfer by buoyancy drift

7-rod bundle analysis

7-rod bundle geometry

Rod diameter (mm)	15
Rod pitch (mm)	19
Rod to wall gap (mm)	2
Hydraulic diameter (mm): - Bundle average - Ch-1 / Ch-2 / Ch-3	8.6 4.8 / 8.7 / 11.5

Mass flux & Void distributions

- Upward migration of void
- Increased void in upper channel reduces channel flow rate

Summary

Channel orientation effects on subchannel analysis

- Establish MATRA code model for inclined subchannels
 - Energy transfer by buoyancy drift
 - Gravitational force in lateral momentum equation
 - Consideration of gap orientation effect between adjacent subchannels
- Examine MATRA for sample problems
 - 2-channel model & 7-rod bundle model
 - Effect of inclination angles on subchannel void & mass flux distributions

Further works

- Modeling of buoyancy drift (V_{rise}, equal-volume exchange, etc.)
- Experimental data for model validation (inclined channels)