

in (C lin lig

The concept design of the nuclear-renewable hybrid system: **Component designs for different Nuclear-Renewable heat ratio**

^aDepartment of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon 305-701, Republic of Korea *Corresponding author: ieongiklee@kaist ac.kr

corresponding uniter polyantee (statistical statistical statistica										
Introduction	Result : Component conceptual design									
The KAIST research team conducted a concentual design of a hybrid system	\square The heat exchanger of the hybrid system \bigtriangledown Heat exchanger design results (.									
cornerating MMP (Migro Modular Pageter) as a base granty source to CSP	is composed of HTR (High-Temperature	1	MMR :	CSP = 3:1	1					
orporating WiNK (Where Windular Reactor) as a base energy source to CSF	Recuperator), LTR (Low-Temperature	Parameters	HTR	LTR	PC	RH				
KAIST-MMR is a reactor developed by the KAIST research team to solve the	Recuperator), PC (Pre-Cooler), RH (Reheater).	Heat load [MW]	101.31	41.04	28.41	11.98				
initiation of transportability of the existing SMR (Small Modular Reactor) by using a h_{1} constant and the second state of the second state o	The heat exchanger is designed with	ΔP _{hot} [kPa]	150	150	100	10				
Since MMR is a CO ₂ -cooled reactor and the working fluid of the CSP and TES is	house code.	ΔP _{cott} [kPa]	100	100	55	150				

exchanger

application

[m]

Active volu

[m³]

Active le

KAIST-HXD code is a printed circuit heat

0.89

3.32

(PCHE) design code for the

Since MMR is a CO₂-cooled reactor and the working fluid a molten salt, recompression with reheating cycle layout is used for the hybrid system.

△ Recompression with reheating cycle layout

However, as revealed in the previous study results, it was difficult to meet the electricity demand with only the hybrid system due to the seasonal intermittency of renewable energy.

The previous study concluded that reducing the ratio of the CSP heat source in the hybrid system could stably meet the electricity demand.

■ Therefore, in this study, the conceptual design of the hybrid system was conducted while decreasing the ratio of the CSP heat source compared to nuclear.

Cycle optimization for new hybrid system

1. Re-select the heat source ratio

In the previous study, the ratio of the heat	\bigtriangledown The n	ew heat	v heat source ratio				
source of MMR and CSP of the hybrid system	MMR:CSP	3:1	5:1	7:1			
is = 1.33:1.	MMR	36.2	36.2	36.2			
The hybrid system is designed by	(MW _{th}) CSP						
decreasing the heat source of CSP while the		9.05	6.033	4.525			

(MW₄)

decreasing the heat source of CSP while the heat source of MMR is fixed.

2. Cycle optimization

The KAIST-CCD code, MATLAB-based in-house code, is used to optimize the hybrid system.

The fixed values and optimization variables used for the optimization of the hybr system are summarized in the table.

▽Fixed value and optimization variables for the Cycle design

Fixed value							
Max P (Mpa)	20	20 MMR heat (MW _{th})			36.2		
Min T (°C)	35		Max T (°C)			550	
Turbine eff. (%)	85	Compressor eff. (%)			80		
HTR, LTR effectiveness	0.95	Component pressure drop (kPa)			100-150		
MMR : CSP	3:1		5:1			7:1	
Re-heat (MW _{fh})	9.05		6.033			4.525	
Optimization variables							
Pressure ratio	Flow s	plit ratio	HF	T Pres	sure ratio		

14 641 1 1 1 1

The optimization results of the hybrid systems are as follows.

-

\vee Optimization results of the hybrid system							
MMR : CSP	3:1	5:1	7:1				
Cycle Thermal efficiency (%)	41.17	41.0	40.86				
Cycle work (MW _e)	19.87	17.8	16.9				
MMR heat (MW _{th})	36.2	36.2	36.2				
Re-heat (MW _{th})	12.07	7.24	5.17				
Total heat (MW _{th})	48.27	43.44	41.37				
HPT pressure ratio	1.34	1.21	1.15				
LPT pressure ratio	1.65	1.82	1.91				
Flow Split ratio	0.66	0.66	0.66				
Minimum Pressure (MPa)	8.41	8.44	8.46				
Mass flow rate (kg/s)	279.5	263.0	241.9				

2	C	1.	6.0	IZATOT	MM	
	Concept	ulagram	or the	NAISI	WINK	

application to a sCO_2 system using the 1-D FDM method.					Active volume [m ³]	3.71	8.59	1.55]
⊽ Heat ex	changer	design	results (⊽ Heat e	changer	r design r	esults (7	:1)	
MMR: CSP = 5:1						MMR:	CSP = 7:	1	
Parameters	HTR	LTR	PC	RH	Parameters	HTR	LTR	PC]
Heat load [MW]	89.06	36.75	25.64	27.27	Heat load [MW]	83.93	17.76	24.28	5.
$\frac{\Delta P_{hot}}{[\mathbf{kPa}]}$	150	150	100	5	ΔP_{hot} [kPa]	150	150	100	
∆P _{æli} [kPa]	100	100	60	150	∆P _{æti} [kPa]	100	100	70	1

0.57

0.84

0.90

0.89

3.07

2.17

2.29

7.84

0.87

0.92

1.21

0.70

1.37

RH

5.175

5

150

0.49

0.62

KAIS

The turbomachinery of the hybrid system is composed of HPT (High-Pressure Turbine), LPT (Low-Pressure Turbine), MC (Main Compressor), and RC (Re-Compressor).

[m]

Active

I The turbomachinery is designed using the KAIST-TMD code, a MATLAB-based in-house code.

I The code can estimate the geometry and on- and off-design performances of the turbomachinery by applying the 1D-mean-line method with loss models.

	Turbomachinery Geometry	10 Turbomachinery Efficiency-Mdot Map	Tutomachiney Efficiency-Motel Map V TUTDOINTACHINETY desig						
	63	and a start water and a start start		HPT	LPT	MC	RC		
	***	8	Work (MW)	10.9	18.0	4.0	5.0		
-	1		Pressure ratio	1.34	1.65	2.38	2.34		
			Efficiency (%)	85%	85	80	80		
-		_ //////	T _{in} (°C)	550	550	35	67.7		
	0 000 0.1	Mage Prov Refe (to(h))	P _{in} (MPa)	19.75	14.55	8.41	8.51		
	24	Turbornachinery PPCMdat Mag	Pout (MPa)	14.7	8.81	20.0	19.9		
	22-		mass flow rate (kg/s)	279	279	279	279		
	Pressure Ray	facetos, ticos,	⊽ Turboma	chinery	design i	results (:	5:1)		
	1.6 -	10000 h		HPT	LPT	MC	RC		
			Work (MW)	6.5	19.43	3.6	4.47		
id		Mass Floor Rate (ligh)	Pressure ratio	1.21	1.82	2.37	2.32		
	\triangle Turbine geometry and performance map		Efficiency (%)	85%	85%	80	80		
	Tulissmachinery Desmetry	01 Turtemachinery Effeiency Mole Me	T _{in} (°C)	550	550	35	66.7		
	• • •		P _{in} (MPa)	19.75	16.15	8.44	8.56		
1	j		Pout (MPa)	16.3	8.84	20.0	19.9		
	8		mass flow rate (kg/s)	253	253	253	253		
	1.04		▽ Turbomachinery design results (7:1						
	······································	Ter tee 199 te tee tee per per per per per per per per per p		HPT	LPT	MC	RC		
	1-		Work (MW)	4.68	19.93	3.4	4.27		
	14 -	anne 113 h	Pressure ratio	1.15	1.91	2.36	2.32		
	90 2.4 -	600 N	Efficiency (%)	85%	85%	80	80		
	£	er lähenge	T_{in} (°C)	550	550	35	67.1		
		en al la composition de la com	P _{in} (MPa)	19.75	16.95	8.46	8.54		
	4	-00 +20 +40 +40 200 200 200 200 200 200 Mass Physic (bg:n)	Pout (MPa)	17.1	8.86	20.0	19.9		
		or geometry and performance man	mass flow rate	242	242	242	242		

Conclusions

The heat source ratio of the newly selected hybrid system is Nuclear: Solar = 3:1, 5:1, and 7:1, and each system is optimized and components are conceptually designed.

As a further study, the off-design performance of the hybrid system will be estimated using the cycle design results and the component conceptual design.

An economic evaluation model will be developed to calculate the optimal heat source ratio of the hybrid system that can meet the electricity demand in the target area.