2021 KNS Spring Meeting

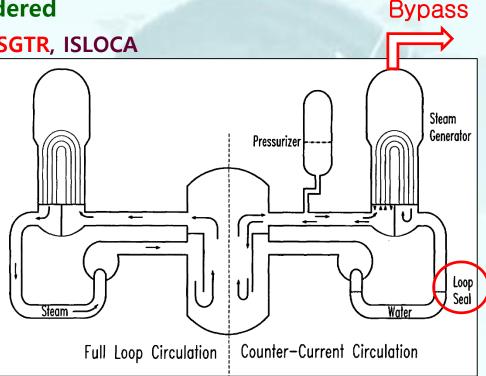
Development of MELCOR Analysis for a TI-SGTR Accident in the OPR1000

강형석*, 김성일, 하광순 hskang3@kaeri.re.kr

한국원자력연구원(KAERI) 2021. 5. 13

Table of Contents

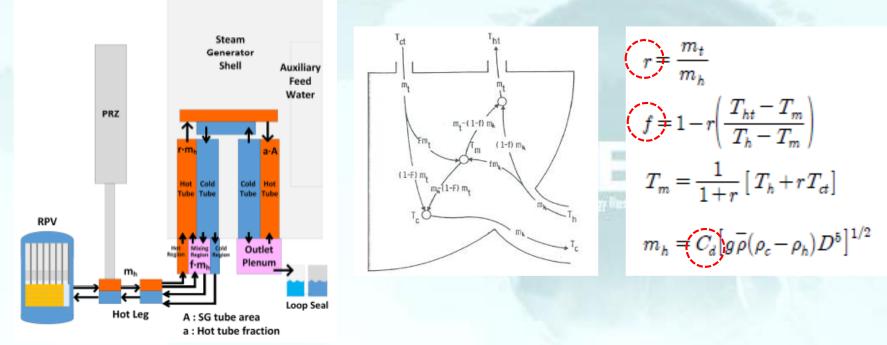
- Research Background & Objectives
 MELCOR Input Parameters for OPR1000 TI-SGTR Analysis
- Analysis Methodology for Natural Circulation Flow
 Westinghouse 1/7 Natural Circulation Test
 OPR1000 Steam Generator Design Data
- **CFD** Analysis
 - **O** Grid Model, Analysis Model, and Governing Equations
- Conclusion and Further Work
 Generate the MELCOR Input Parameters


Temp. Induced Steam Generator Tube Rupture Accident

□ Amendment of Nuclear Safety Action(2015)

- **O** Accident Management Program(AMP) Effective date: 23 June 2016
- **O** Safety Target
 - Site boundary dose < 250 mSv</p>
- **O** Accidents should be considered
 - Containment bypass : TI-SGTR, ISLOCA

Fukushima accident (2011.3.)



MELCOR Analysis

□ Nodalization and Input Parameters for RPV & SG

- MELCOR is a lumped parameter code
- We need input parameters to simulate the counter-current flow in the hot-leg between the RPV and the SG
- **O** CFD analysis is a good way to produce the input parameters

Analysis Methodology for Natural Circulation Flow

CFD Analysis Methodology using WH 1/7 Test Results

- We established CFD analysis methodology to produce the lumped parameter code's input parameters with <u>an error range of about 10%</u> <u>compared to test data</u> except the hot tube number. This methodology may be efficient when compared to the methods proposed by other institutes.
- Transient calculation results used as the initial condition for the steady state calculation. This method can greatly reduce the computational time in the calculation of OPR1000 TI-SGTR

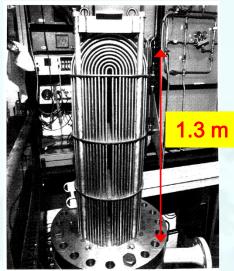
Development of the SG Model using OPR1000 Design Data
 O Pressure drop data during the normal operation condition

WH 1/7 Test Facility

Right

SG

□ WH 4 loop Plant(Indian Point II-1040 MWe) 참조

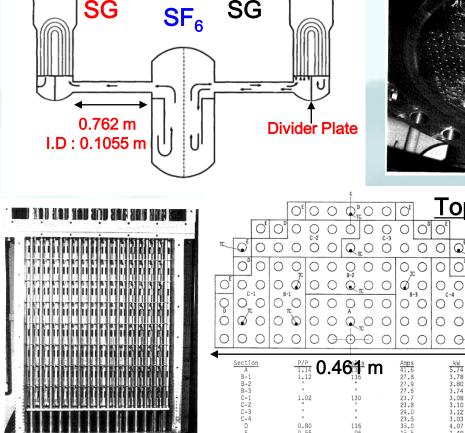

Left

SG

O EPRI Report (TR-102815)

SG Tube Entrance

D



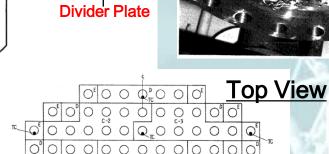
SG tube #: 216 Tube I.D. : 7.75 mm

KAERI

Axial / Cross Flow

Korea Atomic Energy Research Institute

 \bigcirc


0

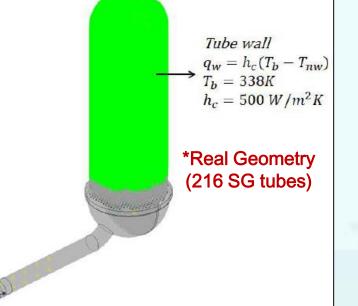
5.74 3.78

 \bigcirc 0

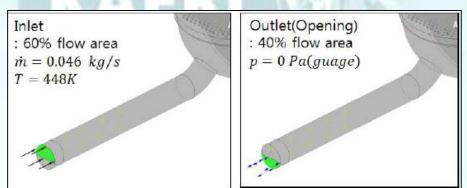
 \bigcirc \bigcirc

Ο \bigcirc Ο

WH 1/7 Test Condition & Results


Le	ft SG			Table 4-1	3				
		SUMMARY OF MODEL STEAM GENERATOR TESTS							
		S : Steady				T : Transient			
	Test Number	SG-S1	SG-S2	SG-S3	SG-S4	SG-T1	SG-T2	SG-T3	SG-T4
	SF ₆ Pressure (psia)	300	400	300	400	300	400	300	400
	Core Power (kW)	22	22	30	30	22	22	30	30
	Number of Hot Tubes	75	62	75	62	119	110	132	101
	Number of Cold Tubes	141	154	141	154	97	106	84	115
	Bundle Mass Flow (1b _m /s)	0.251	0.321	0.264	0.302	0.083	0.183	0.223	0.300
	Hot Leg Mass Flow (1bm/s)	0.115	0.180	0.132	0.178	0.044	0.080	0.098	0.132
4-77	m _t (bundle)/m (hot leg)	2.18	1.78	2.01	1.69	1.88	2.39	2.28	2.10
	Mixing Fraction, f	0.87	0.89	0.85	0.85	0.78	0.83	0.76	0.86
	$(T_{ht} - T_m) / (T_h - T_m)$	0.06	0.06	0.07	0.09	0.12	0.07	0.10	0.06
	$(T_{ht,max}^{H}-T_m)/(T_{h}-T_m)$	0.18	0.14	0.16	0.15	0.28	0.26	0.27	0.27
	$(T_{ht,max} - T_{ht}) / (T_{h} - T_{ht})$	0.13	0.09	0.10	0.07	0.18	0.20	0.18	0.23
	$\Delta T_{ht,tubesheet}/(T_{h}-T_{ht})$					-0.15	-0.05	-0.08	-0.06
	Flanges Heater Power (kW)	-	-	-	-	2.06	2.93	2.60	3.36
	Flanges Power/Flanges Heating	-	-	<u> </u>	-	0.81	0.93	0.70	0.80

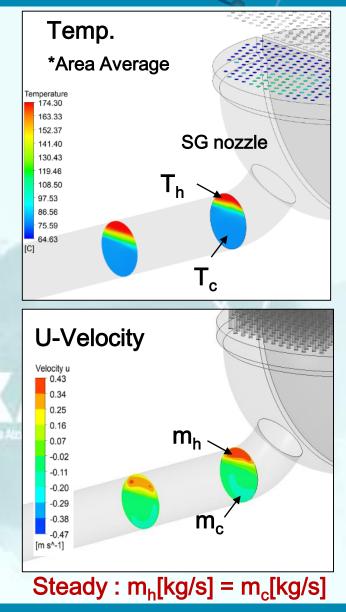
 $m = q_{SG}/\overline{C}_p (\overline{T}_{h,out} - \overline{T}_{c,in})$


KAERI

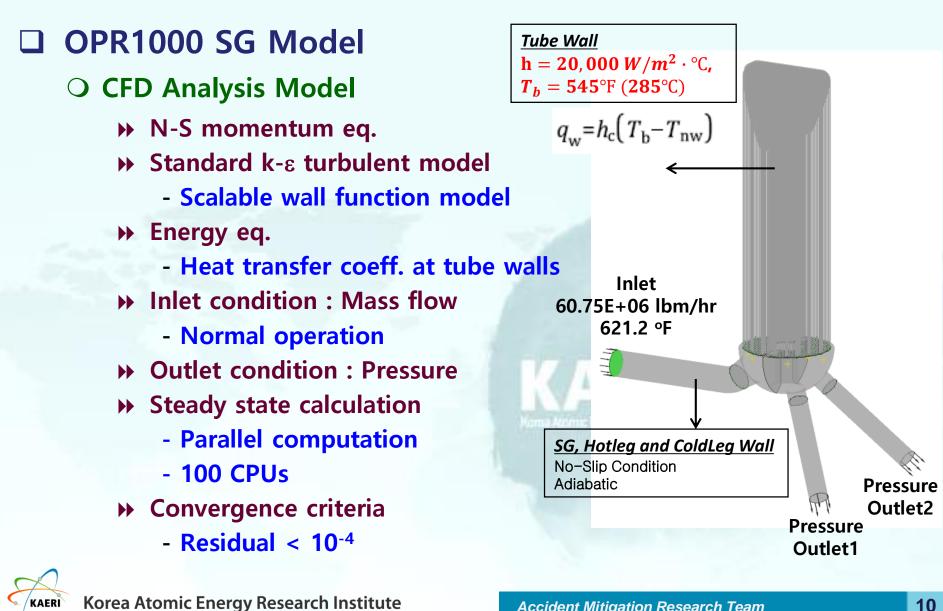
CFD Analysis for WH 1/7 Test (1)

- Analysis Methodology
 - O NUREG-1781, PSI 논문 참조
 - **O** Numerical model
 - ▶ N-S momentum eq.
 - SST turbulent model
 - Buoyancy turbulence generation
 - ✤ Energy eq.
 - Heat transfer coeff. at tube walls
 - Steady state calculation

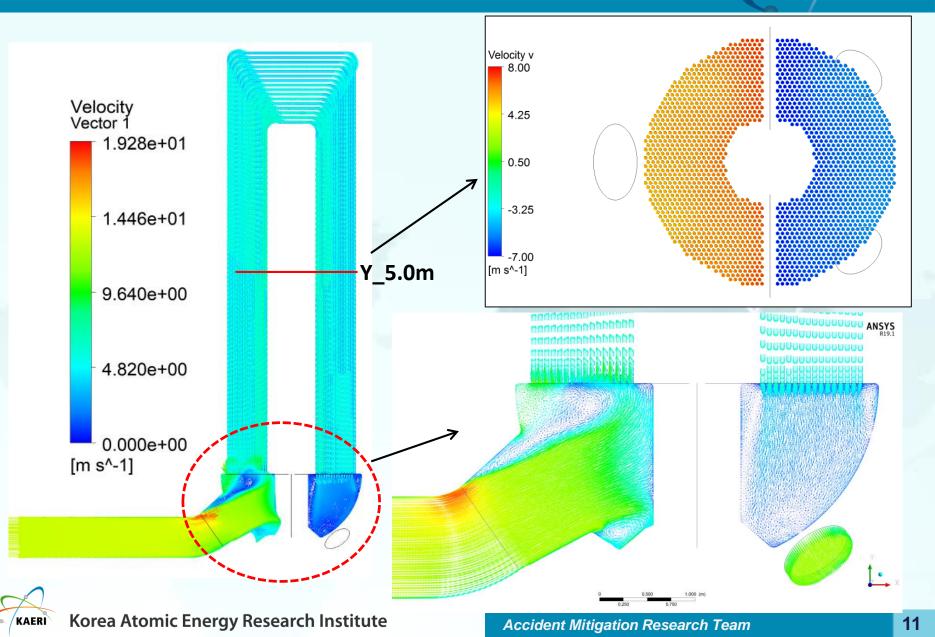
- Initial condition from transient calculation of 200 sec
- Convergence criteria
 - Residual < 2.5 ×10⁻⁴
- **O** Grid Model
 - >> 29,025,136 elements (base)



CFD Analysis WH 1/7 Test (2)


□ MELCOR Input Parameters

		CFD			
Parameters	Test	Cas	e-1	Case-2	Case-3
	1	P _{kb}	No P _{kb}	Case-2	Case-5
SG Heat Loss (kW)	3.56	3.55	2.10	3.43	3.59
$T_h(^{\circ}C)$	159.3	151.3	116.2	149.9	154.7
$T_{c}(^{\circ}C)$	86.8	78.7	81.7	79.8	80.6
$T_{ht}(^{\circ}C)$	100.8	100.3	91.2	98.4	99.8
$T_{ct}(^{\circ}C)$	64.7	64.7	64.7	64.8	64.7
T_m (°C)	96.2	94.0	83.8	93.5	94.5
m _h (kg/s)	0.059	0.055	0.054	0.058	0.058
m _t (kg/s)	0.119	0.107	0.092	0.113	0.117
r	2.01	1.95	1.70	1.95	2.01
f	0.85	0.78	0.60	0.83	0.82
C _d	0.110	0.107	0.115	0.113	0.110
# Hot Tubes	75	56	57	61	63
# Cold Tubes	141	160	159	155	153



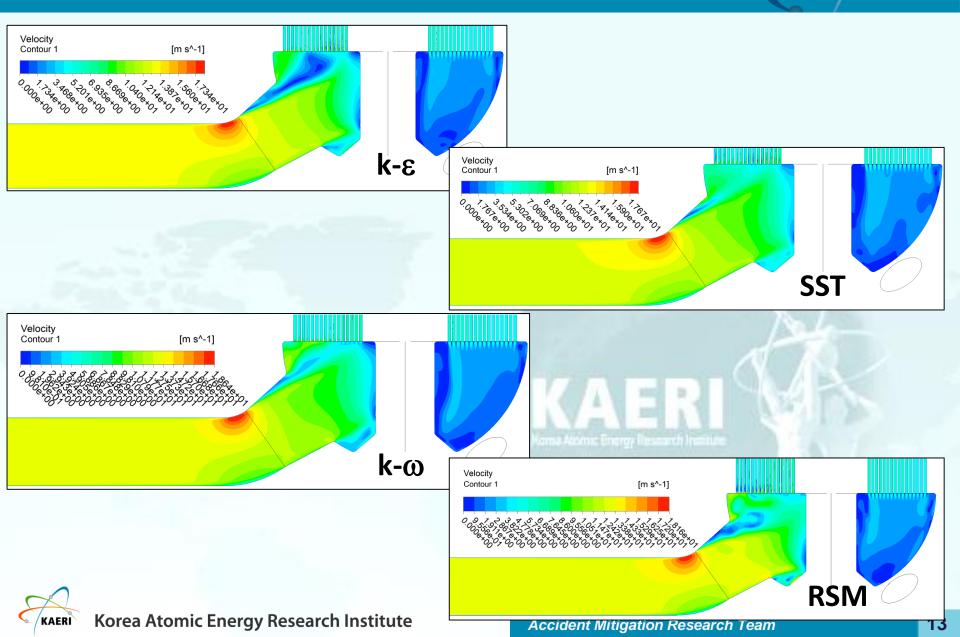
CFD Analysis for OPR1000 SG Model (1)

KAERI

CFD Analysis for OPR1000 SG Model (2)

CFD Analysis for OPR1000 SG Model (3)

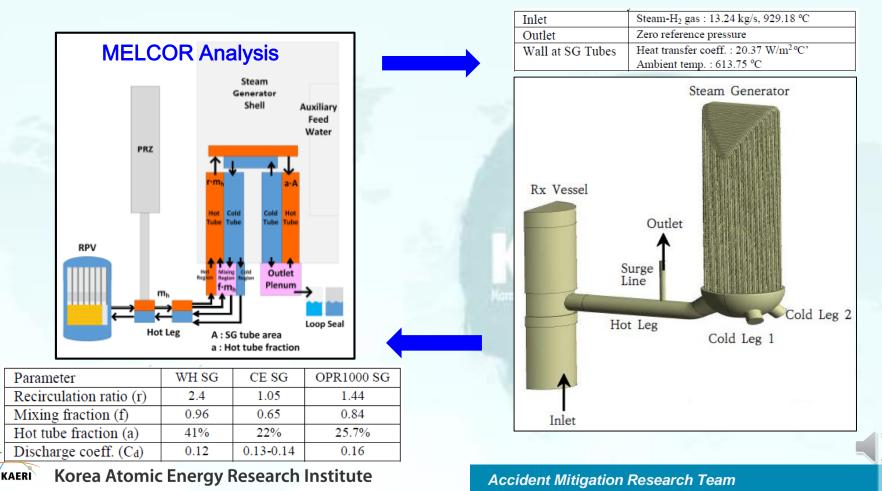
Turbulent Model Sensitivity Calculation Results


*Unit : psi, 1 psi = 6895 Pa, 100% Flow Condition (60.75 × 10⁶ lbm/hr)

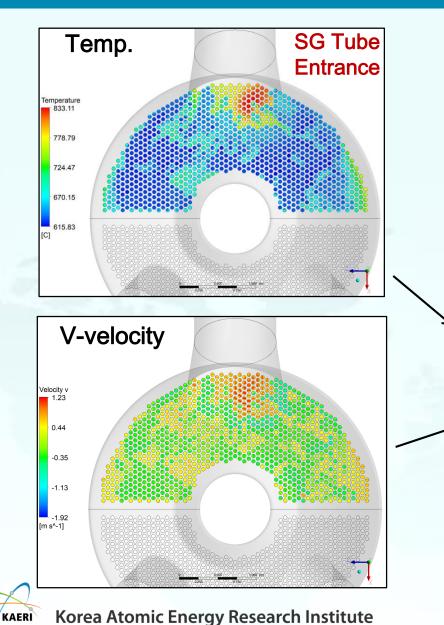
OPR1000	SST	Standard k- ϵ	k-w	RSM
SG ∆P Total	30.01	31.56	30.97	30.66
ΔP (Inlet Plenum)	1.65	3.28	2.34	1.51
ΔP ②(Tube)	27.54	27.16	27.72	28.41
ΔP (Outlet Plenum)	0.82	1.12	0.91	0.74
				Sel-
OPR1000	SST	Standard k-ε	k-@	RSM
Temperature (Outlet, Cold Leg)	564.3 °F	564.8 °F	564.40 °F	564.82 °F
Temperature (Inlet, Hot Leg)	621.2 °F	621.2 °F	621.2 °F	621.2 °F

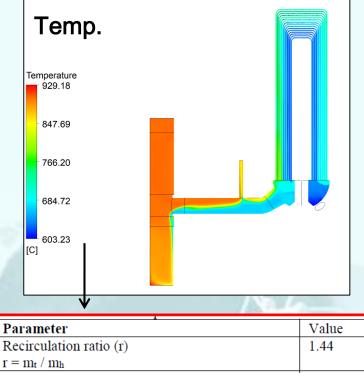
Korea Atomic Energy Research Institute

CFD Analysis for OPR1000 SG Model (4)



CFD Analysis for OPR1000 TI-SGTR (1)


Boundary Conditions in the OPR1000 TI-SGTR Analysis


O Reference : NUREG-1922 Analysis Methodology

MELCOR results : Boundary Condition

CFD Analysis for OPR1000 TI-SGTR (2)

Recirculation ratio (r)	1.44
$r = m_t / m_h$	
Mixing fraction (f)	0.84
$\mathbf{f} = 1 - \mathbf{r}(T_{\text{ht}} - T_{\text{m}}) / (T_{\text{h}} - T_{\text{m}})$	
Hot tube fraction (a)	25.7%
*based on the areas of hot tube & cold tube	
Discharge coefficient (C _d)	0.16
$Q = C_d \left(g \times D^5 \times \bigtriangleup \rho / \rho \right)^{1/2}$	
Th: gas temp. flowing to SG inlet plenum	744.8 °C
Tht: gas temp. flowing to upper region of SG tubes	684.2 °C
T _{ct} : gas temp. returned from SG tubes	629.1 °C
T _m : avg. temp. of the mixing zone	676.5 ℃
m _h : gas flow rate to SG inlet plenum	7.89 kg/s
mt : gas flow rate to upper region of SG tubes	11.42 kg/s

Conclusion and Further Work

Conclusion

- We produced the input parameters of the MELCOR analysis for the OPR1000 TI-SGTR through the CFD analysis using the established CFD analysis methodology developed from the validation of the WH 1/7 test results and the OPR1000 design data
- The accuracy of the produced MELCOR input parameters through the CFD analysis is approximately 10% except the hot tube number which has an error range of approximately 25%

Further Work

 Additional CFD analysis is recommended for another accident sequence in the OPR1000 TI-SGTR such as no flow to the pressurizer

