

Development of Thyroid Model for ICRP Reference Pediatric Computational Phantoms

<u>Chansoo Choi</u>¹, Yeon Soo Yeom², Bangho Shin¹, Haegin Han¹, Sangseok Ha¹, Sungho Moon¹, Gahee Son¹, Chan Hyeong Kim^{1*}

¹Department of Nuclear Engineering, Hanyang University, Republic of Korea

²National Cancer Institute, USA

2021년도 한국원자력학회 온라인 춘계학술발표회, 2021. 05. 12-14

Introduction

VRCPS (Voxel-type Reference Computational Phantoms)

- Adult phantoms¹ (2) adult male/female
- Pediatric Phantoms² (10) newborn, 1, 5, 10, 15 years male/female

VRCPs – Limitations

Difficult to define thin/tiny organs

- Holes in the skin and hollow organs
- Difficult to define micron-thick radiosensitive target regions
 - Skin: 50-µm target layer
 - HATM/HRTM: 8-40-µm target layer
 - Eye lens: 400 μm on average

Stair-stepped surfaces

Anatomically unrealistic

Difficult to deform the phantoms

 Practically difficult to deform phantoms into various postures and body sizes Example: amVRCP

ICRP Task Group 103 (2016)

 The mandate of this task group is to develop the next-generation ICRP reference phantoms, Mesh-type Reference Computational Phantoms (MRCPs), which are the mesh counterparts of the VRCPs but represent more improved anatomical structures than the VRCPs.

Adult MRCPs

• ICRP Task Group 103 completed the adult male and female MRCPs and currently distributes the phantoms through ICRP *Publication 145*³.

amMRCP (left) and afMRCP (right)

ICRP Publication 145

Development of Pediatric MRCPs

 ICRP Task Group 103 is currently developing the pediatric MRCPs by converting the pediatric VRCPs with substantial enhancements in the detailed anatomy of the organs and tissues.

Objective of Present Study

- To develop the new thyroid models of the pediatric MRCPs to address limitations of those of the pediatric VRCP
- To calculate dose coefficients (DCs) and specific absorbed fractions (SAFs) for the thyroid to investigate dosimetric impacts of new thyroid models developed in the present study

Radiosensitive target organ required for effective dose calculation ($w_T = 0.04$)

Important source organ especially for internal exposures to radioactive iodine

Thyroid

Materials and Methods

Problems with Thyroid Model of Pediatric VRCPs

- The issue on the typicality of the thyroid location of the pediatric VRCPs was raised in the 2019 annual meeting of the ICRP Committee 2.
- The anatomist confirmed that the thyroid of the pediatric VRCPs for some ages is in an untypical position.
- The anatomist additionally pointed out that the isthmus region of the thyroid of the pediatric VRCPs is thicker than the typical shape.

Example: 0mVRCP (left) and 1mVRCP (right)

Thyroid shown with other organs

Thyroid isthmus region

Development of Primary Thyroid Model

 Primary thyroid models, along with other general organs, were produced using those of the pediatric VRCPs via mesh conversion and rendering procedures following the methods used in the previous studies³⁻⁵.
Example: 5-year female

3) ICRP, ICRP Publication 145, Adult Mesh-type Reference Computational Phantoms, 2020.

4) Choi, C., Nguyen, T.T., Yeom, Y.S., et al., 2019. Mesh-type reference Korean phantoms (MRKPs) for adult male and female for use in radiation protection dosimetry. Phys. Med. Biol. 64, 085020, 5) Choi, C., Shin, B., Yeom, Y.S., et al., 2021a. Development of Skeletal Systems for ICRP Pediatric Mesh-type Reference Computational Phantoms. J. Radiol. Prot. (in press).

Parameters Related to Thyroid Shape and Location

- Isthmus height (A)
- Isthmus width (B)
- Isthmus thickness (C)
- Overlying tissue thickness (D)
- Anatomical location

Determination of Isthmus Dimensions

Dimensions	Newborn	1 year	5 years	10 years	15 years	Adult (regarded as 18 years ⁸⁻¹⁰⁾)		
lsthmus height			Tong and Rubenfeld (1972) ¹¹⁾					
	Ozguner and		Harjeet et al. (2004) ⁸⁾					
	Sulak (2014) ⁶⁾		Linear interpolation			Joshi et al. (2010) ¹²⁾		
Isthmus width			Ozgur et al. (2011) ¹³⁾					
			Won et al. (2013) ¹⁰⁾					
Isthmus thickness	Sea et al. (2019) ⁷⁾							

6) Ozguner, G., Sulak, O., 2014. Size and location of thyroid gland in the fetal period. Surg. Radiol. Anat. 36, 359–367.

7) Sea, J.H., Ji, H., You, S.K., et al. 2019. Age-dependent reference values of the thyroid gland in pediatric population; from routine computed tomography data. Clin. Imag. 56, 88–92.

8) Harjeet, A., Sahni, D., Jit, I., et al., 2004. Shape, measurements and weight of the thyroid gland in northwest Indians. Surg. Radio. Anat. 26, 91–95.

9) Sultana, S.Z., Khalil, M., Khan, M.K., et al., 2011. Morphometry of isthmus of thyroid gland in Bangladeshi cadaver. Mymensingh Med. J. 20, 366–370.

10) Won, H.S., Han, S.H. Oh, C.S., et al., 2013. The location and morphometry of the thyroid isthmus in adult Korean cadavers. Anat. Sci. Int. 88, 212–216.

11) Tong, E.C.K., Rubenfeld, S., 1972. Scan measurements of normal and enlarged thyroid gland. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1–5, 706–708.

12) Joshi, S.D., Joshi, S.S., Daimi, S.R., et al., 2010. The thyroid gland and its variations: a cadaveric study. Folia Morphol. 69, 47–50.

13) Ozgur, Z., Celik, S., Govsa, F., et al., 2011. Anatomical and surgical aspects of the lobes of the thyroid glands. Eur. Arch. Otorhinolaryngol. 268, 1357–1363.

Determination of Thyroid Location

Anatomical location

The thyroid is typically located in front of ٠ the second and third tracheal cartilage¹⁴⁻¹⁵⁾.

Overlying tissue thickness

- The overlying tissue thickness was derived from the equation given in ٠ Likhtarev et al. (1995)¹⁶⁾.
- This equation is applicable from 1 year to 18 years. ٠

$$d = 0.0007a^{2} + 0.025a + 5.2$$

$$d = overlying \ tissue \ thickness \ (mm)$$

$$a = age \ (y)$$

14) Ellis, H, 2007. Anatomy of the thyroid and parathyroid glands. Surgery (Oxford). 25, 467–468.

15) Nagshi, B.F., Seth, S., Shah, A.B., et al., 2016. Thyroid Hemiagenesis with Agenesis of Isthmus a Case Report. J. Med. Sci. Clin. Res. 4, 10799–10801.

16) Likhtarev, I.A., Gulko, G.M., Sobolev, B.G., et al., 1995. Evaluation of the 1311 thyroid-monitoring measurements performed in Ukraine during May and June of 1986. 14 Health Physics. 69, 6–15.

Modification of Thyroid Model

Determined thyroid parameters

Parameters	Newborn	1 year	5 years	10 years	15 years		
Isthmus height (mm)	8.6	8.9	10.2	11.8	13.5		
Isthmus width (mm)	9.2	9.5	10.4	11.5	12.6		
Isthmus thickness (mm)	1.5	1.5	2.0	3.0	3.0		
Overlying tissue thickness (mm)	_	5.23	5.34	5.52	5.73		
Anatomical location	In front of the second and third tracheal cartilage						

- The thyroid isthmus was adjusted to match the target height, width, and thickness values within 5% difference.
- The thyroid was placed on its typical position, i.e., in front of the second and third tracheal cartilage.
- The overlying tissue thickness was matched to the target values within 5% difference by adjusting the skin near the front neck.

Results and Discussion

Thyroid of Pediatric MRCPs (vs. Pediatric VRCPs)

10fMRCP

1fVRCP

1fMRCP

5fMRCP

10fVRCP

15fMRCP

15mVRCP

15mMRCP

*For ages up top and including 10 years, only female phantoms are shown

Thyroid of 1-year MRCPs (vs. Pediatric VRCPs)

*For ages up top and including 10 years, only female phantoms are shown

Monte Carlo Dose Calculations with Geant4

Simulation cases

- External exposure
 - Calculated value: thyroid dose coefficients (DCs)
 - Irradiation geometry: AP
 - Primary energy: 10 keV 10 GeV
- Internal exposure
 - Calculated value: specific absorbed fractions (SAFs)
 - Source organ: thyroid
 - Target organs: Oesophagus, ET, brain
 - Primary energy: 10 keV 10 MeV
- Particle: photon, electron
- Relative error: less than 5%

Geant4 conditions

- Version: 10.06.p02
- Physics library: G4EmLivermorePhysics
- Secondary range cut: 1 mm

Example: 5mMRCP

Thyroid DCs for External Exposures

SAFs for Internal Exposures – Oesophagus

SAFs for Internal Exposures – Brain

Conclusion

Conclusion

- In the present study, we developed the newborn, 1-year, 5-year, 10-year, and 15-year male and female thyroid models for the pediatric MRCPs.
- The developed thyroid models represent the typical features of the thyroid shape (especially the isthmus shape) and locations of the pediatric population.
- The developed thyroid models provide oesophagus significantly different DCs and SAFs for both the external and internal exposures to photons and electrons especially at low energies.
- Considering anatomical improvements and reasonable tendency of the dose values with age, it is expected that the pediatric MRCPs will provide more reliable dose values in other exposure cases where the thyroid is considered as source and/or target regions.
- The developed thyroid models can also be used for the virtual calibration of the thyroid monitoring system for the radioactive iodine content.

Thank you!