

Coded-aperture Gamma Imager for the Measurement of Ambient Dose Equivalent Rate

Jihwan Boo, Seoryung Park, Suyeon Hyeon, Manhee Jeong*

Dept. of Nuclear & Energy, Jeju National University

May. 13th 2021

Radiation Measurement Lab. Dept. of Nuclear & Energy Jeju National University

Operational quantities for assessing effective dose in area monitoring

For area monitoring, the appropriate operational quantities are the H*(10)

Operational quantities for assessing effective dose in area monitoring

- For area monitoring, the appropriate operational quantities are the H*(10)
- These quantities were designed to estimate the protection quantities in existence at that time

Operational quantities for assessing effective dose in area monitoring

- For area monitoring, the appropriate operational quantities are the H*(10)
- These quantities were designed to estimate the protection quantities in existence at that time
- H*(10) can be measured by the ICRU sphere at a depth of 10 mm

EPSILON-G

(Energetic Particle Sensor for the Identification and Localization of Originating Nuclei)

Specification

Technology	Coded-aperture	
Field-of-view	45°	
Energy Range	30 keV – 3 MeV	
Energy Resolution	8% @ 662keV	
Sensitivity	<2 sec. for 0.3 μSv/hr of ¹³⁷ Cs	
Operational temperature range	-20°C to 60°C	
Size (weight)	104 x 144 x 197 mm (5.1 kg)	
Sensor (intercept area)	GAGG:Ce & SiPM array (50.2 mm x 50.2 mm)	

Conversion factors (MCNPX simulation) – (1) derivation of the response matrix

$$S_i = f M_{ij} \phi_j \quad \implies M_{ij} = f^{-1} S_i \phi_j^{-1}$$

- S_i : the measured spectrum or counts in the i-th energy in the energy spectrum
- M_{ii} : the response matrix

 ϕ_i

f

- : the gamma-ray fluence at an energy corresponding to the j-th channel
- : the open fraction that has 50% in the mask's pattern

Conversion factors (MCNPX simulation) – (2) converting the measured spectrum to the H*(10)

$$H^{*}(10) = \sum_{E_{0}=j} \left(\frac{H^{*}(10)}{\phi} \right)_{j} \phi_{j}$$

$$= \sum_{E_0=j} \left(\frac{H^*(10)}{\phi} \right)_j M_{ij}^{-1} f^{-1} S_i$$

$$=\sum_{E_0=j}G_HS_i,$$

where
$$G_H = \left(\frac{H^*(10)}{\phi}\right)_j M_{ij}^{-1} f^{-1}$$

- $H^*(10)$: Ambient dose equivalent
- H*(10)/φ : The conversion coefficient of the gamma-ray fluence to an ambient equivalent for gamma rays with an energy corresponding to the j-th channel
- G_H : The conversion factor for the H^{*}(10)

Conversion factors (MCNPX simulation) – (2) converting the measured spectrum to the H*(10)

Conversion factors (MCNPX simulation) – (3) converting the measured spectrum to an air kerma (K_a)

$$K_a = \sum_{E_0=j} \left(\frac{K_a}{\phi}\right)_j \phi_j$$

$$=\sum_{E_0=j} \left(\frac{K_a}{\phi}\right)_j M_{ij}^{-1} f^{-1} S_i$$

$$=\sum_{E_0=j}G_KS_i,$$

where
$$G_K = \left(\frac{K_a}{\phi}\right)_j M_{ij}^{-1} f^{-1}$$

- K_a : Air kerma
- K_a/φ : the conversion coefficient of the gamma-ray fluence to an air kerma for gamma rays with an energy corresponding to the j-th channel
- G_k : the conversion factor for an air kerma

Conversion factors (MCNPX simulation) – (3) converting the measured spectrum to an air kerma (K_a)

Comparison of K evaluated from the EPSILON-G with K theoretically calculated, including the corresponding H*(10)

Isotope	Air kerma rate (nGy/h)		Relative	Ambient dose equivalent rate (nSv/h)
	K _{theoratically} calculated	K _{Epsilon-G}		$H^*(10)_{Epsilon-G}$
Ba-133 (5.67 μCi)	119.21	112.34 ± 4.98	-7.40%	148.30 ± 5.48
Cs-137 (20.08 μCi)	226.60	237.96 ± 5.85	4.77%	292.91 ± 6.38
Na-22 (0.93 μCi)	107.28	112.27 ± 6.02	4.44%	134.27 ± 6.48

Measurement time (30 min)	Epsilon-G facing an user	Epsilon-G facing the ground	3" x 3" Nal(Tl) (Backpack survey, Radsearch)	High pressurized ion chamber (IERNet)
H*(10) (μSv/h)	0.073 ± 0.003	0.076 ± 0.004	0.076	0.082

✓ The relative difference is 7.9% in the case of Epsilon-G facing the ground

Comparison of the H*(10) obtained by EPSILON-G, which is evaluated depending on the acquisition time

Estimation of a maximum dose rate that can be obtained by EPSILON-G

Gamma-ray imaging in rea-time for Cs-137 (6 μ Gy/h)

Estimation of a maximum dose rate that can be obtained by EPSILON-G

Estimation of a maximum dose rate that can be obtained by EPSILON-G

 $\%\,BKG\;(0.08-0.15\;\mu Gy/h)$

Estimation of a maximum dose rate that can be obtained by EPSILON-G

Cs-137 ($K_a = 30 \mu Gy/h$)

 $H = BKG (0.08 - 0.15 \ \mu Gy/h)$

Evaluation of H*(10) using Epsilon-G

- ✓ Can provide a radionuclide distribution map
- ✓ Can provide $H^*(10)$ as the operational quantity in area monitoring

Future works

 Application of an unmanned robotic system with Epsilon-G for radiation safety diagnosis based on synchronization of digital coordinates using GPS or LIDAR

Coded-aperture Gamma Imager for the Measurement of Ambient Dose Equivalent Rate

Thank you for your attention!

Radiation Measurement Lab. Dept. of Nuclear & Energy Jeju National University

Counts

Application of Epsilon-G

Application of Epsilon-G

Illustration of use examples of an unmanned ground vehicle

Specification

Dimensions (W x H x D)	1023 mm × 780 mm × 900 mm	
Vehicle Weight	130 kg	
Battery	48V/30Ah	
Max Travel (w/o loading)	10 km	
Climbing Capacity	36° Can Climb Stairs	
Horizontal Rotation Capacity	360°	
Vertical Tilt Capacity of a Motor	± 30°	