Transactions of the Korean Nuclear Society Virtual Spring Meeting

May 13-14, 2021

Consideration for applying machine learning in uncertainty analysis method of severe accident

2021.05.13.

Jaehyun Ham, Sang Ho Kim, Rae-Joon Park (KAERI)

CONTENTS

• • • •

01 Introduction
02 Current method for uncertainty analysis
03 Application of machine learning
04 Conclusion

1 Introduction

Motivation

- KINS regulation about uncertainty in the severe accident analysis
 - The ability of simulation codes and methodologies used in the best-estimate analysis of severe accident should be appropriately presented, and the uncertainty of that should be estimated [1].
- "Ideal" way to assess the uncertainty
 - The analysis based on all parameters related with the target phenomenon.
- Due to the limitation of cost and time, "Real" analysis has been performed with the minimized parameters selected by sensitivity analysis.

[1] KINS, "Safety Review Guideline for Accident Management Program", KINS/GE-N016 (Rev.1), December 2018.

1 Introduction

Objective

- Machine learning
 - Recently gets attention as the most proper method of understanding and arranging multi-dimensional data.
- Possibility to apply machine learning in the uncertainty analysis method
 - Input and output data including various parameters can be considered as data pairs.
- In this study, the current uncertainty analysis method, categories of the machine learning, and the possible way to apply the machine learning for improving the method were considered.

2 Current method for uncertainty analysis

CSAU methodology (1 / 3)

- CSAU (Code Scaling Applicability and Uncertainty)
 - A methodology for quantifying uncertainty based on the results of various studies proposed by USNRC.
- Element 1: To determine code applicability based on the PIRT and the code model.
 - Basic parameters related to the phenomena are determined considering the scenario and the plant type through the PIRT.

Figure 1. Element 1 of the CSAU methodology framework [2]

2 Current method for uncertainty analysis

CSAU methodology (2 / 3)

- Element 2: To verify the accuracy of the selected code.
 - The accuracy can be quantified by the comparison between the experiment data and the benchmark result..

Figure 2. Element 2 of the CSAU methodology framework

[2] R. Martin et. al., "Development considerations of AREVA NP Inc.'s realistic LBLOCA analysis methodology", Science and Technology of Nuclear Installations, January 2008.

2 Current method for uncertainty analysis

CSAU methodology (3 / 3)

- Element 3: To perform uncertainty analysis with the parameters and their range obtained from the sensitivity analysis.
 - Using a sampling method such as Latin-Hyper-Cube, the sequences are determined based on the values of the uncertainty parameters, then all sequences are calculated.
 - The difference between the experimental and the calculation result is indicated as a bias, and the final value is determined by reflecting the bias in the specific confidence level of the calculation result.

Figure 3. Element 3 of the CSAU methodology framework

13 Application of machine learning

Representative categories of machine learning (1 / 2)

- Supervised learning
 - It is used to solve a problem that involves both input and output pairs, which is called training sets, the model performs mapping using these sets.

Figure 4. A flowchart of a supervised machine learning model [3]

[3] D. Nguyen et al., "Joint Network Coding and Machine Learning for Error-prone Wireless Broadcast", IEEE 7th annual computing and communication workshop and conference, January 2017.

O3 Application of machine learning

Representative categories of machine learning (2 / 2)

- Unsupervised learning
 - It is used when the data does not involve the clear input and output pairs.
 - Instead constructing a fit model, the system extracts relationship in data compared to supervised learning.
- Reinforcement learning
 - The system learns the best approach using trial and error method.
 - If there is a set of goals which can be achieved in a specific environment, the system progresses to get the optimized way for the objective based on the feedbacks.

O3 Application of machine learning

Conceptual approach to apply the machine learning (1 / 2)

- Limitation of current uncertainty analysis method
 - Minimized parameters based on the sensitivity analysis are used because of the limitation of cost and time.
- Possible category of machine learning for uncertainty analysis: Supervised learning
 - Code input and output can be defined as a training set.
 - If the model between code input and output can be constructed by the machine learning,
 the required number of simulations can be decreased.
 - In other words, code outputs for the uncertainty analysis can be obtained by the machine learning model without simulations.
 - The concept is indicated as a flow chart in the figure 5 (next page).

O3 Application of machine learning

Conceptual approach to apply the machine learning (2 / 2)

Figure 5. A flow chart of conceptual approach to apply the machine learning in the uncertainty analysis

04 Conclusion

Summary & Further study

- Supervised learning was considered to apply in the uncertainty analysis based on the assumption that input and result from the code can be considered as a training data set.
 - Required number of simulations may be reduced by the machine learning when required number of sampling inputs are larger than the number of training sets.
 - Uncertainty may be estimated more accurately based on the analysis with all parameters related to the target phenomenon.
 - However, uncertainty from the machine learning also should be quantified.
- Detailed application process, and the uncertainty analysis for a sample severe accident phenomenon will be provided in further study.
- Other possible ways to apply the machine learning also can be discussed later.

THANK YOU

ACKNOWLEDGEMENT

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (Ministry of Science and ICT) (NRF- 2020M2D7A1079182).

