Water Pressure Distribution on Pool Door for Research Reactor

Kwangsub Jung*, Taejin Kim, Jinho Oh

Korea Atomic Energy Research Institute

Korean Nuclear Society Spring Meeting May 12-14, 2021

Introduction

- Pool door
- Pool doors are used for maintenance of the research reactor.
- The pool door is installed between the reactor pool and the service pool.
- Reactor pool water is drained but the service pool maintains water level.
- Water pressure on the pool door
- : Hydrostatic pressure + Dynamic pressure

The pool door installed in the research reactor pool gate

TID-7024 Formula (1)

- TID-7024 report "Nuclear Reactors and Earthquakes", U.S. Atomic Energy Commission, 1961
- Chap. 6 Dynamic Pressure on Fluid Containers
- Horizontal dynamic water forces
- : impulsive force + convective force

TID-7024 Formula (2)

	Impulsive	Convective	
Equivalent weight of water	$W_i = 1.15W \frac{H}{L} \tanh\left(0.866 \frac{L}{H}\right)$	$W_c = 0.264W \frac{L}{H} \tanh\left(3.16\frac{H}{L}\right)$	
Height (from the bottom)	$h_i = 0.375H$	$h_{c} = H \left(1 - \frac{\cosh\left(3.16\frac{H}{L}\right) - 1}{3.16\frac{H}{L}\sinh\left(3.16\frac{H}{L}\right)} \right)$	
Force	$P_i = rac{\dot{u}_0 W_i}{g}$ \dot{u}_0 : zero period acceleration	$P_{c} = W_{c}\theta_{h}\sin\omega t$ Natural frequency of water oscillation $\omega^{2} = \frac{3.16g}{L} \tanh\left(3.16\frac{H}{L}\right)$ Angle of free oscillation $\theta_{h} = 3.16\frac{A_{h}}{L} \tanh\left(3.16\frac{H}{L}\right)$	

Spectral Acceleration Approach

• Mutual relationships of pseudo values: displacement, velocity and acceleration

$$A_1 = S_D = \frac{S}{\omega} = \frac{S_A}{\omega^2}$$

- S_A is the spectral acceleration for the natural frequency of water, ω .
- Angle of free oscillation can be obtained from S_A.

$$\theta_h = \frac{\omega^2}{g} A_1 = \frac{\omega^2}{g} \frac{S_A}{\omega^2} = \frac{S_A}{g}$$

 Convective force can be obtained from S_A and geometry of pool.

$$P_c = \frac{S_A W_c}{g} \sin \omega t$$

FRS curve of research reactor building

ACI 350.3 Formula (1)

- ACI 350.3 standards, "Seismic Designs of Liquid-Containing Concrete Structures and Commentary", American Concrete Institute, 2006
- Impulsive and convective forces are essentially same as those in TID-7024. Only importance and modification factors are adopted.

	Impulsive	Convective	
Force	$P_i = C_i I \frac{W_i}{R_i}$	$P_c = C_c I \frac{W_c}{R_c}$	
Response modification factor	$1.5 \le R_i \le 3.25$	$R_{c} = 1.0$	
Vertical distribution	$P_{iy} = \frac{P_i}{H^2} \left[2H - 3h_i - (3H - 6h_i)\frac{y}{H} \right]$	$P_{cy} = \frac{P_{c}}{H^{2}} \left[2H - 3h_{c} - (3H - 6h_{c})\frac{y}{H} \right]$	
Horizontal distribution	$p_{iy} = \frac{P_{iy}}{B}$	$p_{cy} = \frac{P_{cy}}{B}$	

Water Pressure Distribution

- Water pressure acts on one side of the pool door.
- Impulsive and convective pressures are negligible in slot of the pool gate.

Location	Pressure (kPa)			
	Hydrostatic	Impulsive	Convective	Total
Pool Surface	0	3.86	12.8	16.7
Door Bottom	58.8	27.0	3.01	88.8

Structural Analysis Results

Load combinations

1) Normal condition: Dead load + Hydrostatic pressure + Gasket air pressure

2) Extreme environmental condition: Static loads + Impulsive pressure + Convective pressure + SSE loads

• Structural Analysis

- Responses to the load conditions are calculated through FEM analysis using ANSYS.
- The maximum von-Mises stress occurs at the bottom.

	Static	Impulsive	Convective	SSE	Total
Max. Stress (MPa)	82.6	31.7	48.0	2.6	93.6
Stress Distribution					