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1. Introduction 
 

Machine learning technique is a useful method for 
constructing models that infer specific answers or 
interpret complex systems based on data including input 
parameters and output. Due to this characteristic, 
recently, many researches have been actively conducted 
to develop a model that predicts thermal-hydraulic 
phenomena using machine learning [1-10]. 

In general, thermal-hydraulic models are developed 
by analyzing the relationship between key parameters 
and hundreds or thousands of experimental data. At this 
time, machine learning can be effectively used in the 
step of finding the relationship between key parameters 
and data. This is because a machine learning method is 
specialized in finding complex relationships between 
data. However, hundreds or thousands of experimental 
data are a small quantity to be used as training data for 
machine learning. If the amount of data is small, the 
machine learning model may be overfitting, resulting in 
low generalization performance. In this study, the 
problem of an insufficient amount of data was solved 
through pseudo data produced by using the existing 
thermal-hydraulic correlations [4]. Through several 
studies [4, 11-15], it has been confirmed that a model 
with a deep neural network structure exhibits superior 
problem-solving ability. Therefore, to build a machine 
learning model with good prediction performance, 
DenseNet [15], the latest deep learning algorithm based 
on convolution neural network (CNN), was applied for 
data training. 

This study is a step to confirm the applicability of 
machine learning techniques using pseudo data to 
predict thermal-hydraulic phenomena. Two phenomena 
were used as confirmation objects. The first one is 
condensation heat transfer occurring in the passive 
containment cooling system (PCCS), and the second 
one is a phenomenon in which droplets are separated 
from the liquid film under the annular-mist flow 
condition formed in the reactor core of the reflood 
phase. Experimental data and existing correlations for 
the two phenomena were collected, and each correlation 
was evaluated using the experimental data. Based on 
the evaluation results, pseudo data to be used for 
training was generated. The machine learning model 
trained on these data was assessed using the collected 
experimental data. 
 

2. Experimental data and existing correlations 
 

2.1 Condensation heat transfer 
 

In design basis accidents such as a loss of coolant 
accident (LOCA) or a main steam line break (MSLB) 
accident, high-temperature steam is released into the 
containment filled with atmospheric pressure air. This 
increases the pressure and temperature inside the 
containment. The PCCS is a safety system to effectively 
reduce the temperature and pressure inside the 
containment. The PCCS consists of several tube heat 
exchangers. In the accidents, the tube heat exchangers 
remove heat from the air-steam mixture through natural 
convection heat transfer and condensation heat transfer. 
At this time, air, which is a noncondensable gas (NCG), 
interferes with condensation, which has a great 
influence on the PCCS performance. 

To investigate the PCCS performance, condensation 
heat transfer experiments using a single tube under 
natural convection have been performed [16-25]. Table 
I shows the test conditions of each experiment. Most 
researchers have presented a correlation to predict the 
condensation heat transfer coefficient (HTC) based on 
their own experimental data: Dehbi[16], Liu[17], 
Su[19,20], Lee[21], Jang[23], Kim [24], Kang [25], Fan 
[26]. There is also a well-known Dehbi's semi-empirical 
model [27]. The model assessment was performed 
based on the experimental data in Table I to identify the 
prediction performance of the existing correlations. 
Table II shows the mean absolute error (MAE) of each 
correlation for 10 experiments. 
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where n, Ci, and Mi are the number of data, calculated 
value, and measured value, respectively. As a result of 
the MAE comparison, the correlations predicted well an 
experiment within the application range but did not 
have good prediction results for all experiments. 
 
2.2 Droplet entrainment 
 

Various two-phase flows are formed in the reactor 
core in the reflood phase of a large-break LOCA. 
Among them, in the annular-mist flow, droplets are 
generated by the interfacial friction between high-
velocity steam and liquid film. The generated droplets 
contribute greatly to cooling the core through wall heat 
transfer and interfacial heat transfer. 
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Table I : Test conditions of the condensation heat transfer 
experiments 

Exp. 
Tube 

diameter 
(m) 

Tube 
length 

(m) 

Total 
pressure 

(bar) 

NCG 
mass 

fraction 

Wall 
subcooling 

(K) 

No. 
of 

data 
Dehbi 
[16] 0.038 3.5 1.5-4.5 0.25-

0.91 10–50 107 

Liu 
[17] 0.04 2.0 2.5-4.6 0.17-

0.75 3.8-26.8 26 

Kim 
[18] 0.0412 0.65 4.0-20.0 0.10-

0.72 50–60 72 

Su 
[19] 0.038 2.0 2.0-6.0 0.20-

0.80 27–70 145 

Su 
[20] 0.038 2.0 4.0-6.0 0.20-

0.52 13–70 19 

Lee 
[21] 0.04 1.0 2.0-5.0 0.10-

0.80 20–69 43 

Fan 
[22] 0.0321 2.0 2.0-6.0 0.20-

0.80 27–70 212 

Jang 
[23] 0.01 1.0 2.0-5.0 0.10-

0.90 18–69 20 

Kim 
[24] 0.0215 1.0 2.0-5.0 0.10-

0.80 40 39 

Kang 
[25] 

0.0215 
0.0336 
0.0424 

1.33 
1.28 2.0-6.0 0.20-

0.80 16–56 195 

 
Many air-water experiments [28-36] have been 

performed to investigate droplet behaviors under a 
vertical annular-mist flow condition. These experiments 
measured the mass fraction of the entrained droplet at 
the outlet of the test section. The entrained droplet mass 
fraction is determined by the droplet entrainment rate 
and the deposition rate. In the case of droplet deposition 
rate, direct measurement is possible in the experiment 

by the double film extraction method, but in the case of 
droplet entrainment rate, it is very difficult to directly 
measure it in the experiment because droplet deposition 
and entrainment occur at the same time. Therefore, the 
deposition correlation was derived based on actual 
experimental data, but the entrainment correlation was 
proposed based on the estimated value from the mass 
balance equation. 

Using the collected experimental data in Table III, 
the droplet entrainment correlations of Hewitt [37], 
Lopez de Bertodano [38], Okawa [39], and Han [40] 
were assessed. At this time, Okawa's deposition model 
[39] was used for the assessment. Table IV shows the 
MAE of each correlation for 10 experiments. From the 
table, it was confirmed that there is no correlation that 
gives good results for all experiments. 

 
 
 

Table III:  Test conditions of the droplet entrainment 
experiments 

Exp. Dia. 
[mm] 

Pressure 
[bar] 

Gg 
[kg/m2/s] 

Gl 
[kg/m2/s] 

No. of 
data 

Barbosa [28] 31.8 2.0-5.2 13-56 11-330 75 
Okawa [29] 5.0 1.4-7.6 86-628 89-1630 170 

Whalley [30] 31.8 1.2-3.5 3-235 8-710 156 
Sawant [31] 9.4 1.2-4.0 41-446 43-473 30 

Fore [32] 50.8 1.0 24-44 16-69 44 
Jagota [33] 25.4 2.8-4.2 41-162 47-449 27 

Asali [34] 22.9 
42 1.0-2.0 30-130 6-126 55 

Magrini [35] 76.2 1.0-1.5 67-130 4-40 20 
Hinkle [36] 12.6 2.8-6.2 52-254 103-530 27 

 
 
 
 

Table II: The MAE of each condensation HTC correlation 

Model 
Exp. 

Dehbi  
[16] 

Liu  
[17] 

Su  
[19] 

Su  
[20] 

Dehbi  
[27] 

Lee  
[21] 

Fan  
[26] 

Jang  
[23] 

Kim  
[24] 

Kang  
[25] 

Dehbi [16] 0.041 0.630 0.154 0.397 0.076 0.059 0.207 0.553 0.060 0.079 
Liu [17] 0.318 0.114 0.652 0.317 0.196 0.387 0.496 0.327 0.387 0.357 
Kim [18] 0.109 0.585 0.303 0.739 0.147 0.641 0.571 0.609 0.643 0.519 
Su [19] 0.083 1.085 0.099 0.287 0.045 0.222 0.093 0.157 0.217 0.191 
Su [20] 0.233 0.098 0.176 0.044 0.170 0.451 0.096 0.354 0.446 0.353 
Lee [21] 0.589 2.023 0.798 0.777 0.635 0.165 0.835 0.173 0.165 0.187 
Fan [22] 0.122 0.740 0.079 0.317 0.124 0.150 0.071 0.161 0.141 0.106 
Jang [23] 0.286 0.420 0.197 0.249 0.140 0.780 0.157 0.108 0.200 0.178 
Kim [24] 0.089 0.776 0.096 0.264 0.124 0.107 0.131 0.194 0.080 0.087 
Kang [25] 0.214 1.096 0.418 0.525 0.328 0.207 0.439 0.154 0.162 0.073 

Total 0.158 0.876 0.243 0.416 0.181 0.229 0.269 0.254 0.203 0.161 
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Table IV: The MAE of each droplet entrainment correlation 

Experiment 
Droplet entrainment correlations 
Han 
[40] 

Okawa  
[39] 

Hewitt  
[37] 

Lopez 
[38] 

Barbosa [28] 0.275 0.327 0.530 0.928 
Okawa [29] 0.933 0.273 1.062 0.501 

Whalley [30] 0.147 0.228 0.231 0.417 
Sawant [31] 0.499 0.386 0.899 0.583 

Fore [32] 0.375 0.269 0.136 0.785 
Jagota [33] 0.189 0.263 0.428 0.808 

Asali-22.9 [34] 0.179 0.144 0.179 0.489 
Asali-42 [34] 0.338 0.356 0.224 0.632 
Magrini [35] 0.130 0.310 0.231 0.217 
Hinkle [36] 0.641 0.335 0.873 0.796 

Total 0.527 0.291 0.675 0.626 
 

3. Machine learning model 
 
Machine learning technique was applied to improve 

the prediction for all experimental data. To prepare 
enough training data, pseudo data was established based 
on the assessment results of the existing correlations. 

 
3.1 Pseudo data 
 

To replace the experimental data, the pseudo data 
should be composed of datasets that include the test 
conditions of each experiment. To secure quality data, 
the pseudo data for each experimental range was 
created using a correlation that gave the smallest error 
for each experiment (see Tables II and IV). 

The pseudo condensation HTC data was generated 
based on the total pressure (Pt), mass fraction of the 
NCG (Wncg), and wall subcooling(ΔTw,sub) (see Table I). 

( ), ,, ,c pd c t ncg w subh f P W T= D ,  (2) 

where fc is the condensation heat transfer correlation. 
About 540,000 pseudo data were created in the thermal-
hydraulic range of 10 experiments. The pseudo data 
consisted of 7 input parameters Pt, Wncg, ΔTw,sub, tube 
diameter, tube length, Jakob number, and Grashof 
number, and an output parameter, condensation HTC. 

Pseudo data for the droplet entrainment rate was 
generated in the same way. 

( )e, , ,pd e g lm f P G G= ,   (3) 

where fe is the droplet entrainment correlation. Gg and 
Gl denote gas and liquid mass flux, respectively. Based 
on the MAE  in Table IV, about 1.3 million pseudo data 
were produced in the thermal-hydraulic range of 10 
experiments. These data consisted of 9 input parameters 
hydraulic diameter, P, Gg, Gl, ρg, ρl, μg, μl, and σ, and an 
output parameter, the droplet entrainment rate. 

The data obtained in this way were classified into 
training, validation, and test datasets through random 
sampling and applied to machine learning. 

3.2 Model architecture 
 

In a traditional neural network such as multi-layer 
perceptron (MLP), the order of input parameters does 
not affect the result because all nodes of each layer are 
fully connected. Because the input parameters for 
predicting the condensation HTC and the droplet 
entrainment rate have no meaning in the order, a 
traditional neural network composed of a fully 
connected layer is suitable. However, the MLP has 
limitations in constructing a deep network. In this paper, 
a machine learning model with DenseNet-based 
architecture [15] was applied to obtain a deep network 
structure. DenseNet, a CNN-based algorithm, improves 
prediction performance by receiving outputs of all 
previous layers as inputs of a subsequent layer (Fig. 1). 
 

Input

Dense layer

Dense layer

Dense layer

Dense layer
 

Fig. 1. Dense block in DenseNet 
 

The machine learning model of this study consisted 
of the MLP for expansion of input parameters, and 
DenseNet, for learning the expanded inputs (Fig. 2). 
The CNN-based models receive data in a two-
dimensional form as input and performs local operation 
that computes on a part of the input. Therefore, if 
parameters with independent information in a one-
dimensional form are used as an input of DenseNet 
without any processing, the order of the parameters 
affects the learning result. Since the MLP connects all 
input parameters, it can be said that the output of the 
MLP contains all information of the input parameters. 
Based on this, to consider all input parameters of the 
pseudo data, the output obtained through the MLP was 
transferred to the input of DenseNet. At this time, the 
output of the MLP was reshaped into a two-dimensional 
form before entering DenseNet. And the reduction in 
learning performance that may occur due to local 
operation was complemented by concatenating three 
parallelized MLPs. The DenseNet structure consisted of 
two dense blocks. The first one had 6 dense layers, and 
the second one had 12 dense layers. In the last part of 
the model, a global average pooling and a dense 
operation were conducted to obtain one output (Fig. 2). 
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Fig. 2. Architecture of the machine learning model 

 
3.3 Prediction results 
 

The machine learning model was trained for each 
pseudo data of the condensation heat transfer and the 
droplet entrainment. The trained model was assessed 
using the experimental data in Tables I and III. First, the 
assessment results for the condensation HTC are 
presented in Table V and Fig. 3. It can be seen from 
Table V that the prediction performance of the machine 
learning model is excellent for all experimental data. 
The assessment results for the droplet entrainment rate 
are shown in Table VI and Fig. 4. Similarly, when 
compared with the results in Table IV, the trained 
model gave a small error for all experiments. 
 

Table V: The MAE of the machine learning model for the 
condensation experiments 

Experiment MAE 

Dehbi [16] 0.044 
Liu [17] 0.117 
Kim [18] 0.112 
Su [19] 0.115 
Su [20] 0.047 
Lee [21] 0.173 
Fan [22] 0.075 
Jang [23] 0.112 
Kim [24] 0.077 
Kang [25] 0.081 

Total 0.088 
 

 
Fig. 3. Assessment result of the machine learning model for 

the condensation experiments 
 

Table VI: The MAE of the machine learning model for the 
droplet entrainment experiments 

Experiment MAE 

Barbosa [18] 0.274 
Okawa [19] 0.273 

Whalley [20] 0.148 
Sawant [21] 0.383 

Fore [22] 0.138 
Jagota [23] 0.194 

Asali-22.9 [24] 0.131 
Asali-42 [24] 0.196 
Magrini [25] 0.122 
Hinkle [26] 0.332 

Total 0.255 
 

 
Fig. 4. Assessment result of the machine learning model for 

the droplet entrainment experiments 
 

4. Conclusions 
 

In this study, the existing correlations for the 
condensation heat transfer including noncondensable 
gas and the droplet entrainment in a vertical annular-
mist flow were investigated, and they were assessed 
using collected experimental data. Consequently, each 
correlation showed satisfactory prediction results for the 
experiments within its application range but did not 
predict all experiments well. To solve this problem, a 
machine learning technique was applied. To obtain 
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sufficient training data, pseudo data was produced 
based on the existing correlations. And these data were 
trained using the latest deep learning method. The 
trained machine learning model was assessed using 
experimental data. As a result, the trained model gave 
good prediction results for all experimental data. 

This study confirmed the applicability and feasibility 
of the machine learning technique for predicting 
thermal-hydraulic phenomena. As a future work, we 
plan to expand the application range of the machine 
learning model by adding the condensation experiments 
under a flat plate condition and the steam-water 
experiments for an annular-mist flow. The final goal is 
to present a new correlation through a parametric study 
based on the machine learning model. 
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