Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 13-14, 2021

Core Thermal Hydraulic Characteristics of Open Pool Type Research Reactors

Hyung Min Son^{*}, Kiwon Song, Jonghark Park Korea Atomic Energy Research Institute, 989-111 Daedeok Daero, Yuseong Gu, Daejeon, 305-353, Korea *Corresponding author: hyungmson@kaeri.re.kr

Introduction

- KAERI is designing an integrated thermal hydraulic test loop for studying heat and flow characteristics in RR core cooling channel.
- Facility aims to generate TH data on narrow rectangular cooling channel in open pool-type RR. • This study compiled and analyzed core TH conditions of RRs with medium thermal powers (≥5 MW).
- Comparing coolant velocities to fuel heat fluxes may be more intuitive than just looking at core powers, where overall proportional relationship is observed.

600 -----

Core TH Design Summary

- RR have similar inlet temperature ranges, but have widely scattered distributions in terms of inlet pressure, coolant velocity, and heat fluxes.
- Core coolant flow direction plays crucial role in core subcooling range.

Table I: Core thermal hydraulic design variables of medium and higher power research reactors

	Kesearch Keactor								
Parameter	JRTR	KJRR	JRR-3M	OPAL	TRR-II	ETRR-2	RMB	RA-10	RGS-GAS
Q _{core} [MW]	5	15	20	20	20	22	30	30	30
[°C]	37	35	35	38	40	40	38	38	40
P _{in} [kPa]	180	180	155	<u>370</u>	152	280	<u>490</u>	<u>557</u>	199.7
dP _{core} [kPa]	22	95	110	<u>200</u>	<u>52</u>	80	300	360	50
Vch [m/s]	2.5	6	6.2	8.2	6.24	4.7	9.4	11.5	3.8
Direction	Down	Down	Down	Up	Up	Up	Up	Up	Up
No. FAs	18	22	26/6	16	25/6	29	23	19	40/8
No. Plates/FA	21	21	19/15	21	21/17	19	21	21	21/15
t _{ch} [mm]	2.35	2.35	2.28/2.38	2.45	2.58	2.7	2.45	<u>2.45</u>	2.55
W _{ch} [mm]	66.6	66.6	66.6/54.0	70.5	71.5	70	70.5	<u>70.5</u>	67.1
W _{meat} [mm]	62.1	62	62/49	65	67.3	64	65	<u>65</u>	62.75
L _{meat} [mm]	640	600	750	615	600	800	615	<u>615</u>	600
q _{avg} [kw/m ²]	158	414.6	380.2	720	409	<u>370.4</u>	<u>738</u>	940	<u>394.3</u>
Fq[-]	≤ 3.0	$\leq 3.\overline{\theta}$	3.112	<u><3.0</u>	3.829	<u>3.16</u>	≤ 3.0	3.3	<u>5.62</u>

