

Characterization of plasma arc piercing process for STS304

2021.05.12

Dong-Hyun Kim^{a,b}, Dae-Won Cho^{a,*}, Jeong Suh^a, Kwang-Deok Choi^a, Ryoon-Han Kim^a, Tae-Hyung Na^c ^aBusan Machinery Research Center, Korea Institute of Machinery and Materials ^bMechanical Engineering, Pusan National University ^cCentral Research Institute Korea Hydro and Nuclear Power Co. Ltd, Daejeon

dwcho@kimm.re.kr

- 1. 연구 배경
- 2. 실험 계획

- 3. 실험 결과
- 4. 결 론

주요 공정 단계에 따른 원자력 발전소 해체 시장 규모 예측

연구 배경 - example (RV)

<KHNP, 2nd International Workshop on Nuclear Decommissioning of Aging NPPs In Cooperation with IAEA>

연구 배경 - example (RVI)

		구조물	재질	Mass (kg)	Volume (m³)	방사능 준위
때마 더 거니 거나 소프	노심 측면	Baffle plate	STS-304	9,523	76.40	중준위
		Barrel	STS-304	30,472	244.48	중준위
		Baffle former	STS-304	2,612	20.96	위 전
		Thermal shield	STS-304	23,697	190.13	중준위
	노심 상부	Upper support assembly	STS-304	6,153	49.37	극저준위
		Upper core plate	STS-304	1,534	12.31	저준위
		Guide tube	STS-304	8,419	67.55	극저준위
		Upper support column	STS-304	20,713	166.18	극저준위
		Thermo-couple column	STS-304	45	0.36	극저준위
		Hold down spring	STS-304	618	4.96	극저준위
	노심 하부	Lower core plate	STS-304	1,682	13.50	저준위
		Core support plate	STS-304	4,192	33.63	극저준위
		Secondary core support plate	STS-304	1,284	10.30	극저준위
		Secondary core support column	STS-304	7,776	62.39	극저준위
		Core support tube	STS-304	665	5.34	극저준위
		압력용기	Carbon Steel	185,397	1,465	저준위

연구 배경 – Cutting method

Ca	tegory	Methods				
		Oxy-fuel cutting				
	Chemical Energy Sources	Metal powder assisted oxy-fuel cutting				
		Oxygen lance				
		Plasma cutting				
		Oxy-arc cutting				
Thermal	Electrical Current	Electric arc water jet cutting				
	Sources	Electric discharge machining				
		Contact arc metal cutting				
		Contact arc metal drilling				
		Laser beam cutting				
	Laser beams	Oxygen assisted laser beam cutting				
		Laser sublimation cutting				
	\land	Shearing				
		Sawing				
		Sitearing Sawing Grinding Explosive cutting				
		Explosive cutting				
Mechanical		Orbital cutters				
		Milling				
	Hydraulic cutting	Cutting and de-coating with pure water jets				
		Cutting with abrasive water jets				

열적 절단 시 많은 2<mark>차 폐기물</mark> 발생

2<mark>차 폐기물 발생량</mark>에 대한 분석 필요

물리적인 현상에 대한 이해 필요

연구배경 – Plasma arc Cutting

◆ 플라즈마 아크 절단

연구배경 – Plasma arc Piercing

◆ 변수에 따라 플라즈마 아크 피어싱의 품질이 달라짐

• 노즐-시편 거리(SOD), 노즐 type, 전류, 시편 두께

✓ Current

- Plasma current decide the arc heat source, arc pressure, which is the dominant physical model in plasma cutting process

$$\eta_A q_A(x, y) = \eta_A \frac{VI}{2\pi r_A^2} \exp\left(-\frac{x^2 + y^2}{2r_A^2}\right) \quad p_A \cong \frac{\mu_0 I^2}{4\pi^2 r_A^2} \exp\left(-\frac{r^2}{2r_A^2}\right)$$

Arc heat source

Arc pressure

실험계획 – 실험장비구성

실험 계획 - 결과 표

	Variables			Results							
No	Thickness	s SOD (mm)	Current (A)	Area (mm ²)		D (a)	$t_{T}(s)$	DAT (s)	DAR (%)		
	(mm)			DA affected	Hole P _T (s)						
1	5	1	145	61.61	23.6	0.4	2.8	0.9	32.5	• Thickness	
2	5	1	180	83.23	54.2	0.4	3.7	2	54.8	: 시편의 두께	
3	5	2	145	24	24.2	0.3	2	0.4	21	 Stand-off distance(SOD) : 시편과 노즐과의 거리 	
4	5	2	180	32.59	18.6	0.3	2	0.2	10.4		
5	5	3	145	22.6	18.8	0.3	1.3	0	0	Current	
6	5	3	180	24.29	20.6	0.3	2	0	0	: Plasma Arc 설비에 입력한 전류값	
7	5	4	145	24.64	20.1	0.3	2	0	0	• Area	
8	5	4	180	24.11	19.5	0.3	2	0	0	: Arc에 의해 만들어진 시편 상단면의 구멍 면적	
9	5	5	145	23.03	19	0.3	1.7	0	0	(더블 아크 영향부 및 홀 면적)	
10	5	5	180	25.28	21	0.3	1.5	0	0	 Piercing time(P_T) 	
11	10	1	145	84.95	34	3	7.1	6.4	90.2	: 아크 첨화 이후 시편 piercing까지 걸린 시간	
12	10	1	180	97.9	64.1	1.5	3.7	3.2	88.3	• Total time(t _r)	
13	10	2	145	72.31	38.3	1.6	3	1.2	39.2	: Arc가 유지된 총 시간	
14	10	2	180	75.67	63.7	1.3	3	1.3	42.5	Double Arc time(DAT)	
15	10	3	145	44.84	38.3	1.2	2.6	0.8	23.9	: Double Arc fille(DAT) : Double Arc가 유지된 총 시간의 합	
16	10	3	180	60.98	34.6	1.1	2.4	1	44.5		
17	10	4	145	38.84	32.4	1.2	2.6	0.5	17.6	• Double Arc Kate(DAK) • $\sum^{\Sigma DAT}$ × 100 (%)	
18	10	4	180	42.41	33.4	1	2.3	0.3	12.3	Total time X 100 (76)	
19	10	5	145	40.56	35.3	1	2.5	0.3	11.1		
20	10	5	180	46.98	40.1	0.8	2.5	0.8	33.2		

실험계획 - 데이터 측정

실험 결과 측정 방법

● 결과 분석-1

결과 분석-1

• 결과 분석-2

결과 분석-2

결과 분석-2

● 결과 분석-3

● 결과 분석-4

- 본 연구에서는 Band-pass filter를 부착한 고속카메라와 DAQ측정 장비를 활용하여 시편-노즐 거리와 전류, 시편 두께에 따른 플라즈마 아크 피어싱 특성 및 더블 아크와의 관계를 분석함
- 2. DAQ를 통해 측정한 전압파형에서 전압강하 및 노이즈는 더블 아크 발생을 의미
- 시편-노즐 거리가 작을수록 시편 상단면의 홀 형상과 더블 아크 영향부의 형상이 불규칙한 모양을 가지는 반면 시편-노즐 거리가 클수록 매끄러운 원형 모양을 가짐
- 시편-노즐 거리가 작을수록 더블 아크 발생률이 증가했으며 이로 인해 시편 상단면의 홀 면적과 더블 아크 향부의 면적이 증가
- 시편 두께가 두꺼울수록 더블 아크 발생률이 증가했으며 이로 인해 시편 상단면의 홀 면적과 더블 아크 영향부의 면적이 증가
- 145 A에서 180 A로의 전류 변화에 대한 더블 아크 발생률의 뚜렷한 경향은 나타나지 않았으나 시편 상단면의 홀과 더블 아크 영향부의 면적이 증가하는 경향이 나타남