Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea (Online conference), May 13-14, 2021

A CINEMA Code Analysis of the Simplified ERVC Loop in the SMART

2021. 5. 13

Hyoung Tae Kim

Accident Monitoring and Mitigation Research Team, KAERI, Daeduk-daero 989-111, Daejeon, Korea kht@kaeri.re.kr

사고감시대처연구실

Contents

- 1. Geometry of the ERVC
- 2. Nodalization of the ERVC
- 3. IC & BC
- 4. Calculation Results
- 5. Summary and Conclusions

Korea Atomic Energy Research Institute

1. Geometry of the ERVC (inner channels)

<u>Inner channel</u>: 0 ~ 42°: Ri= 2400 mm ~90° ∶ Ri= 3140 mm

Korea Atomic Energy Research Institute

1. Geometry of the ERVC (outer channels)

2. Nodalization of the ERVC

Korea Atomic Energy Research Institute

KAERĨ

3. IC & BC

IC and BCs are set to simulate SMART operation conditions

Location	Parameter	Value
Heated wall	Thermal power	2.82 MW
ERVC channel	Initial inventory	0 (empty)
Outlet (to containment)	Pressure	1.0 bar
IRWST	Initial level	8.0 m
	Initial head*	8.6 m
	Temperature	50°C
	Pressure	1.55 bar
Cavity	Opening time of injection valve	2,000 sec.

* From bottom of RPV to top of IRWST water

4. Calculation Results

IRWST injection

O Injection starts after 2,000 sec (with opening valve)

- ✤ Max. flow about 150 kg/sec
- ✤ Flow becomes nearly stagnant at ~ 10,000 sec

Fig. <1> Cavity injection from IRWST

□ IRWST water level

- Level is rapidly decreased from 2,000 sec (valve opening time) to 10,000 sec
- Small decrease rate from 50,000 sec (flow balance btw. Inlet and outlet flows in the ERVC channel)

Fig. <2> Time variation of IRWST water level

Flow circulation btw. inner and outer channels

O Steady flow about 600 kg/sec

 Natural circulation is stabilized after saturation condition (~50,000 sec)

Fig. <3> Time variation of ERVC channel flows

Given Steam venting to the containment

- **O** Boiling of ERVC channel produces 1 kg/sec of steam flow rate
- **O** Cavity inlet flow is little smaller than steam outlet flow
 - ➤ The difference of flow is nearly constant, so channel level is continuously and linearly decreasing after 50,000 sec (see the next figure)

Fig. <4> Comparison of inlet and outlet flows in the ERVC channel

□ Water level in the ERVC channel

- The water level is rapidly increase up to 10,000 sec. (max. ~5.8 m)
- **O** The level is linearly decreasing after 50,000 sec.
 - >> The inventory is continuously lost during the boiling period

Fig. <5> Time variation of water level in the ERVC channel

Pressure in the channel

- Pressure rapidly increased and fluctuating during subcooled boiling, and stabilized after saturation boiling
- **O** Pressure difference mostly by hydraulic head for each elevation
 - Steam pressure in the upper part of the channel approaches 1.0 bar (outlet pressure BC)
 Ref. Case

Fig. <6> Time variation of pressure at different elevations of the ERVC channel

☐ Temperature in the channel

- Initially subcooled water (323 K) is fulfilled and its temperature is increasing up to saturation temperature
 - **>>** Saturation conditions reaches at about 50,000 sec.

Fig. <7> Time variation of pressure at different elevations of the ERVC channel

5. Summary and Conclusions

- Simplified ERVC loop is modeled with assumptions of geometry conditions, IC, and BC from SMART design and severe accident management strategy
- □ The SPACE code (ver. 3.0, SVN 193) is used to simulate the performance of ERVC in the SMART
 - Cavity flooding by gravity driven flow from IRWST
 - Heat removal by natural circulation in the ERVC channel
 - Channel voiding and continuous steam venting to containment
- It is concluded that thermal-hydraulic flow conditions are stabilized after saturation boiling in the ERVC channel
 - Steam release to containment is about 1 kg/sec
 - O Long term cavity flow is small but sustains the cavity flooding
- □ For future works, the ERVC loop model should be extended to overall plant calculations for inner vessel and containment analysis
 - O Establishment of SMART-CINEMA version for ERVC modeling
 - Application to CINEMA-SACAP analysis for SA scenarios

