

## Corrosion Performance of Coating for Venturi Fouling Mitigation at Nuclear Power Plant

KNS 2021 Spring Friday 14<sup>th</sup> May 2021





This work was supported by KOREA HYDRO & NUCLEAR POWER CO., LTD. (No. 2019-TECH-09).



- 1. Introduction
- 2. Materials and Method
- 3. Results and Discussion
- 4. Conclusions and Future Works



## Introduction

### **Motivation**





- EC = 측정된 RCS 전체 에너지 입력항의 합 (RCP 등)

ρ : 주급수 압력에서의 밀도



- A phenomenon in which microparticle suspension such as iron oxide (Fe<sub>3</sub>O<sub>4</sub>, magnetite) are deposited on pipe walls and near venturi holes.
  - Changing surface roughness, and causes an error in the measurements of the venturi flowmeter.
  - The pressure loss value of the flow rate has increased by 0.3 % every year, which has led to the problem of reducing the power generation of nuclear reactors.
  - Economic losses are incurred through the cleaning or replacement of the venturi flowmeter during the regular planned preventive maintenance.



Figure 2-6. General Areas Sampled on the TMI-1 Feedwater Venturis

Survey and Characterization of Feedwater Venturi Fouling at Nuclear Power Plants (Volume 1: EPRI TR-100514, May 1992)





### • Domestic research

- So far, only the structure of Venturi has been modified.
- By changing operation methods have been performed.

#### • Oversea research

General Electric company (GE) solved the fouling phenomenon in the jet pump pipe of the BWR by applying a TiO<sub>2</sub> coating technology.





•

•







### **Materials and Methods**



### • Specimens

- Commercial stainless steel (Type 304L).
- All surfaces of each specimen were mechanically ground with silicon-carbide papers up to 800 Grit, and then ultrasonically cleaned in ethanol and deionized water for 5 min and dried.

### • Applied Coating Methods

- In a broad sense, two techniques of coating were used.
- CrN, TiN, and Ti were deposited by Physical vapor deposition (PVD).
- Ni and Pd were deposited using an electroless plating (EP).
- Coating was conducted by companies who carry coating as an industry scale.

## **Experimental**





<Adhesion Test>

Pull-Down Breaking Adhesion Test (ROMULUS system)





<Static Corrosion Test>

Temperature : 235 ℃ (포화증기압:400psig) 300hrs Waterchemistry Condition : pH 9.3, (ETA, N<sub>2</sub>H<sub>4</sub> 60 ppb) Dissolution Oxygen : < 5 ppb (Deaeration : Ar gas)



#### <Flow Accelerated Corrosion Test>

| 유속 : 6.0 m/s                      | 700hrs |
|-----------------------------------|--------|
| pH : 9.3 (ETA, Hydrazine 60 ppb)  |        |
| Pressure/Temp. : 1,200 psi / 235℃ |        |

- Mass change : Corrosion rate
- Scanning electron microscopy (SEM) : Surface morphology
- X-ray diffraction (XRD) : Phase identification
  - Scanned at 20-80° with a 0.02°/s.



## **Results and Discussion**



After test

### **Pull-Down Breaking Adhesion Test**

- ASTM D4541 : 200 psi
- ROMULUS (Used for testing coating of gas turbine at high temperature environments)



### **XRD Analysis : Phase Identification**





Static test at 235 ℃ during 300 hrs.



## **Surface Morphology and Corrosion rate**





Corrosion rate from mass change

## Discussion



### **EP-Pd : Crack**

- The Pd coating was deposited as a double layer with Ni.
- Assumed to be caused by the Ni inner layer under the Pd layer.
- To remove the cracking issue, additional Pd plating without the Ni inner layer is also planned.





## **Conclusions and Future Work**



- Various metal surface coating technologies such as physical vapor deposition (PVD) and electroless
  plating (EP) to reduce the deposition of Fe<sub>3</sub>O<sub>4</sub> inside the venturi system, to increase the operating time of
  the venturi, and to minimize the error in main feedwater flow rate measurement.
- PVD coating has excellent material quality, but the coating process is difficult when the structure of the raw material has non-flat surface morphology.
- Therefore, in the case of operating nuclear power plants, we will consider applying EP, which can ensure uniform coating quality while maintaining the existing surface morphology.

| -               |                             | CrN                                                   | Ti *                 | TiN                      | Pd *             | Ni *    |
|-----------------|-----------------------------|-------------------------------------------------------|----------------------|--------------------------|------------------|---------|
| Correction rate | Static (300Hr)              | 0.00499                                               | 0.00654              | 0.00545                  | 0.01984          | 0.03681 |
| (MPY)           | Flow Accelerated<br>(700Hr) | 0.02079                                               | 0.05451              | 0.00227                  | 0.05153          | 0.13781 |
| Corrosion       | Static                      | particle *<br>spallation                              | none                 | none                     | Cracking*        | none    |
| Morphology      | Flow Accelerated            | none                                                  | none                 | none                     | Pd spalling      | none    |
| YPD Phace       | Static                      | CrN, Cr₂N                                             | Ti                   | TiN                      | Pd, Ni           | Ni      |
|                 | Flow Accelerated            | CrN, Cr <sub>2</sub> N,Cr <sub>2</sub> O <sub>3</sub> | Ti, TiO <sub>2</sub> | Ti, TiN,TiO <sub>2</sub> | Pd, PdO, Ni, NiO | Ni, NiO |

New nuclear power plant  $\rightarrow$  PVD Operating nuclear power plant  $\rightarrow$  EP

## **Future Work**



### • Performance test with optimal coating method applied.

- Design and manufacture of mock-up Venturi Tube for performance test.
- Long-term corrosion performance tests on coated specimens

### • Oxide film analysis

- SEM-EDS / XRD /TEM Analysis + Epoxy Mounting and Pullout Test
- Prototype development

Scale-down Venturi Flowmeter(Mock-up)





# Thank you

Material in Nuclear Systems Lab

http://corrosion.pusan.ac.kr

*Questions : wjchoi91@pusan.ac.kr* 

ACKNOWLEDGEMENT

This work was supported by KOREA HYDRO & NUCLEAR POWER CO., LTD. (No. 2019-TECH-09).