Preliminary study on reactingFoam for the prediction of hydrogen flame propagation

Ji-Woong Han, Dehee Kim, and Jongtae Kim jwhan@kaeri.re.kr Korea Atomic Energy Research Institute

Objective

Analysis of model's parameter effects on flame propagation prediction
 Evaluation of capability of reactingFoam

Related researches

- SNL(Sandia National Laboratory) : the large scale experiments on the effect of obstacles and transverse venting on flame acceleration and transition to detonation
- Becker Technology GmbH: Experimental research on hydrogen and fission product behavior in containments have been done in THAI test facility
 KAERI: Numerical analysis of hydrogen flame acceleration in APR1400
- containment
 Numerical analysis of flame propagation during spray operation in THAI facility

Geometry & Condition

- 12.3% H₂ by mole fraction in air
- STP(Standard Temperature and Pressure) without flow
- $X : \dot{Y} : Z = 30.48 : 2.44 : 1.83$

Fig. Computational grid sensitivity

Flame propagation prediction

Fig. Temperature profiles with respect to time variation

Fig. Variation of averaged temperature and concentration within facility

- ReactingFoam : open source CFD platform for flame analysis
- Standard k-ε turbulence model
- One step irreversible reaction mechanism
- PaSR(Partially Stirred Reactor) combustion model Fraction of the reactive zone Concept of PaSR

Initial mass fraction Final mass fraction of ith species of ith species

Fig. Concepts of PaSR

Table. Reaction mechanism candidate

	Reaction	A [mol/ cm ³ s]	T [K]
(1) Hasemi RM	2H ₂ +O ₂ →2H ₂ O	1.8E+13	1.7614E+4
(2) Marinov RM	H ₂ + ½ O ₂ →H ₂ O	9.9E+20	1.515E+4

Every computational cell is split into reacting zone and non-reacting zone. + Reacting zone : all reaction occur

+ Non-reacting zone : mixing occur without any reaction

Reactive zone can be expressed as followings

$$\kappa = \frac{\tau_0}{\tau_0 + \tau_{mix}}$$

where τ_0 and τ_{mix} are characteristic chemical and mixing time scales in each cell. τ_{mix} can be obtained from k- ϵ equation as following eq.

$$\tau_{mix} = \mathsf{C}_{mix} \frac{k}{\varepsilon}$$

where Cmix , k and ϵ are coefficient for evaluating characteristic mixing time scale, turbulent kinetic energy and turbulent dissipation rate, respectively.

Conclusion and Future work

- The capability of reactingFoam was evaluated as a preliminary steps for flame propagation prediction.
- Sensitiviy analaysis on Cmix parameter and reaction mechanism as well as no. of grid should be evaluated before they were applied to prediction.
- ReactingFoam solver was able to simulate the variation of propagating speed and intensity of flame in a channel.
- However, the further studies on reaction mechanisms, combustion models, other available solvers need to be conducted in the future.