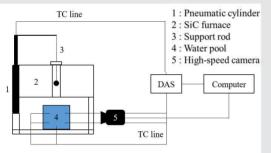
Discussion on possibility of early film collapse for corium particles during FCI based on experimental results from unexpected collision between solid sphere and thermocouple

KHNP CRI^a, KAIST^b Seung Hyun Yoon^{a*}, Hee Cheon NO^b, Yu jung Choi^a

Introduction


Film boiling heat transfer

- Film boiling is formed with the high temperature corium (~3000K) interacting with a water
- Typically, the collapse of the film boiling occur at the minimum film boiling temperature
- Previous studies with the pressure shock reported the behavior that the film boiling breaks instantly and recovers the film boiling regime back
- However, the early and complete collapse of the film boiling was observed in this paper
- ✓ Caused by the unintentional collision between the sphere specimen and the thermocouple installed in the water pool

Method

Test apparatus

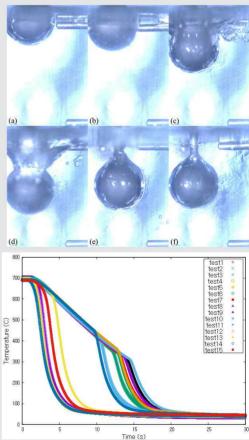
Heated specimen in the furnace drops to the water pool and collides with TC

Conditions

- "Fast" in Quenching mode indicates the complete collapse of the film boiling in an early time
- "Slow" in Quenching mode means that the film boiling sustained until the specimen temperature reached the minimum film boiling temperature

Test #	Initial sphere temperature ©	Initial water temperature ©	Quenching mode
1	946.25	25.8	Fast
2	936.72	28.6	Slow
3	927.35	30.8	Fast
4	929.19	32.5	Fast
5	933.94	34.1	Fast
6	919.47	35.5	Slow
7	922.06	36.9	Slow
8	926.62	37.8	Slow
9	918.86	38.7	Slow
10	926.08	39.5	Slow
11	930.02	40.2	Slow
12	927.15	40.8	Slow
13	926.19	41.4	Fast
14	927.40	41.9	Slow
15	921.13	42.6	Fast

Heat transfer calculation


Heat flux and heat

 $q_{\text{total}}^{"} = \frac{Q_{\text{total}}}{\pi D_{\text{sphere}}^{2}} \quad Q_{\text{total}} = m_{\text{sphere}} c_{p} \frac{d}{dt}$

Results

Observations (500 ~ 1000 fps)

- Test #15 (Quenching mode : Fast)
- ✓ (a): right before the contact between the sphere and the TC
- ✓ (b): instant film breakup at the collision
- ✓ (c): recover of the film boiling
- ✓ (d): instant film collapse again at the lowest position
- ✓ (e): recover the film boiling and sustained the state about 1.36 s
 ✓ (f): beginning of the complete collapse of the film boiling at relatively
- early time compared to other test cases
- The fast and slow quenching behaviors did not depend on the instant film breakup
- ✓ Test #12 showed the slow quenching with (d) photo
- ✓ Test #13 showed the fast quenching without (b) and (d)

Conclusions & Acknowledgement

- The early collapse of the film boiling was observed by the collision between the specimen and the TC
- This may occur and enhance the heat transfer during FCI with such situations: 1) the solidified corium meets with the cavity bottom, 2) the solidified corium interacts with the pressure wave generated by the steam explosion
- This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE) (20193110100050)